MA206 – Probability & Statistics

Cumulative Distribution Functions (CDFs)

Population – a well-defined group of objects.  An example of a population is the entire corps of cadets at the United States Military Academy.

Sample – a subset of a population often used to make inferences about the population.  This subset is selected in some manner that will help the observer make an inference (say something) about the population.  An example of this is the cadets that are enrolled in your MA206 section.


If the experimenter would like to figure out the average height of the corps of cadets, then he could use your section as a sample in order to make an estimate of the true population height.  How could we make this “estimate” better?  


If the experimenter worked for a clothing company that planned to sell clothes to the academy for the incoming class next summer, then he would want to know the distribution of heights instead of just the average height.  What do we mean by “distribution” of heights?  One attempt at finding a distribution would be to find the percent of cadets that are less than 5’, the percent less than 5’ 6’’, the percent less than 6’ tall, the percent less than 6’ 6’’ and the percent that are less than 7’ tall.  A better way of doing this is to use the Empirical Distribution Function (EDF) that we have been discussing in this course.  Once we’ve found the EDF, we can use it to calculate probabilities or to make inferences about the population from which it came.  In this course, we will do the latter so we will fit one of the Cumulative Distribution Functions (CDF) discussed below to the EDF.  Once the experimenter has accomplished this, he can easily let the clothing company know how many of each size to have on hand next year.


A known parametric distribution is an efficient way of representing the distribution of a population over its domain.  Populations usually do not exactly “fit” one of the known parametric distributions, but using the “best fit” one will make your calculations much easier than using a nonparametric method (parametric simply means that the function has one or more parameters in it).  For any distribution we decide to use, we will attempt to find the value(s) of the population parameter(s) using the random sample that we collected.  The continuous parametric distributions that we will study in this course are the Uniform, Exponential, Gamma, and Normal Distributions.  We will also use the Weibull Distribution, but we do not discuss it in detail as we do the aforementioned distributions.  You will be required to: 1) choose one of these distributions that best models the data you are given and 2) find the parameter(s) for the distribution that best fits (defined as minimum SSE) the parametric distribution’s CDF to the data’s EDF.


Now that you see how EDFs and CDFs are related (EDF comes from the data and CDF comes from a known distribution), we want to discuss how we will use these functions.  Suppose I know that a population is Exponential in nature.  The CDF will look like the following (you have seen this previously):  
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 where λ is the parameter that you need to estimate from your random sample.  We will use the experiment presented earlier in which we were interested in the time (in seconds) between vehicles passing a stationary point on the Eisenhower Expressway.  Furthermore, let’s suppose that we collected some data on our experiment and used this data to find the EDF.  Next we used this EDF to find that the parameter λ = 0.1 will minimize the sum of squared error between the CDF and the EDF.  If we assume that this sample was randomly taken from the population (and therefore accurately represents the larger population), then we can infer that the population’s true parameter is 0.1.  Thus, we can say that the CDF for the population is 
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.  Now we can use this CDF to find probabilities and determine what could happen if our assumptions are true.  We might want to know the probability that the next car will pass before 5 seconds elapses:  
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.  This might seem unimportant, but this type of analysis helps systems engineers decide where to put a traffic light and how long the traffic light should last.  It would be nice if the engineer could look at a picture in order to determine which street in an intersection is the busiest and thus which street should have the longest green light.  Which one of the following streets is the busiest – MacArthur Road or Eisenhower Avenue?
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Figure 1:  Histogram of MacArthur Road vs. Eisenhower Avenue

Here, we see that about 64% of the time there is only an 8 second interval between cars on Eisenhower Avenue, while 30% of the time MacArthur Road has that small of an interval.  You can see that the observations show that MacArthur Road has a 10% chance of having 40 seconds between cars, while Eisenhower Avenue has 0% chance of that occurring.  Therefore, the data indicates that Eisenhower Avenue is the busier of the two streets.  If you are given a CDF, how can we find this type of information?

Let’s suppose that the CDF above for Ike Avenue is 
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and is only valid when x is greater than or equal to zero.  If we know the probability that x ≤ 8 and the probability that x ≤ 16, then we can certainly find the probability that  8 ≤ x ≤ 16.  The probability that lies between 8 and 16 is simply F(16) – F(8).  If we would like to calculate how “dense” the probability function is between 8 and 16, we would just take the probability mass and divide by its width (in this case the width would be 8).  If we wanted to know how dense it was between 16 and 24, we could carry out the same process:  [F(24) – F(16)]/8.  Now we want to know how dense the probability is at a particular value, let’s say 24.  We could estimate it by finding [F(25)-F(23)]/2, [F(24.5)-F(24)]/0.5 or [F(24.1)-F(24)]/0.1.  Since this is a continuous function, we could always get a better estimate by letting the values get closer together.  Therefore, we will use the limit to find the exact density at 24.  You should remember the following from single variable calculus: 
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Remember that you just found a density at 24, not the probability.  In order to find a probability, you must be given an interval.  

By replacing the number 24 above with x, we can find a function that gives us the density at any point x.  
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.  We will call this function the probability density function (PDF) and will find that there are some relationships worth investigating between the PDF and the CDF.

Below is a CDF of a parametric distribution that we will study this semester.  The lines drawn on this CDF represent the tangent line at different values of the CDF.  We can actually say a lot about the density function from the slope of these lines.  What is the domain of the PDF?  What is the range of the PDF and does it have a max or a min?  Is the PDF increasing or decreasing?  These are all answered very easily from the picture below.

[image: image8]
Figure 2:  Graph of Cumulative Distribution Function (CDF)

You can see from the domain of the CDF (the CDF is asymptotic to 0 and 1) that the PDF will be supported from -∞ to ∞.  The slope of the tangent lines for the CDF start out (from negative x to positive x) as very small numbers and increase gradually until the function reaches zero.  At x = 0, the CDF’s slope changes from increasing to decreasing (an inflection point).  This means that the PDF values slowly increase until we reach x = 0, then the values decrease.  Thus, we have a maximum for the PDF at x = 0.   Since the values of the slopes of the tangent lines are all positive, we see that the PDF is nonnegative (it will never be less than zero).  Let’s look at the PDF associated with the CDF above.

[image: image9]
Figure 3:  Graph of Probability Density Function (PDF)

One of the problems students traditionally have is that they think this is the probability mass function (which we will study later) for this continuous distribution, when actually it is the probability density function.  For example, it is not true that the probability that X = -20 is 0.012.  Let’s see why this is not the case.  

Remember from Physics that density = mass / volume.  Here, we have width (not volume) so we will use the following equation: density = mass / width (or mass = density * width).  Therefore,

probability mass = probability density * width => Since we know the probability density at each value of x is the functional value f(x), we will substitute f(x) for the density. 
probability mass = f(x) * width  => From the picture, we can see that we need to find the area under the curve where width = Δx and as Δx approaches 0, it becomes dx.  
probability mass = 
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If we wanted to know how much probability lies between x = 10 and x = 20, then we would do the following:  
[image: image12.wmf])

10

(

)

20

(

|

)

(

)

(

20

10

20

10

F

F

x

F

dx

x

f

x

x

-

=

=

=

=

ò

 where f(x) represents the probability density function (PDF) and F(x) represents the cumulative distribution function (CDF).

What is expected of you as an MA206 graduate?  If you are given a set of data, you are expected to use the following procedure and the ideas presented in this reading to analyze the data.
Example:
	25.36
	14.05
	32.14
	50.97
	14.50
	9.59
	25.15
	10.53
	11.85
	17.03

	9.38
	11.64
	30.22
	35.21
	28.93
	39.10
	11.04
	26.42
	31.00
	43.48

	29.71
	34.93
	25.54
	19.07
	31.64
	30.84
	31.84
	24.94
	32.83
	23.54

	34.59
	17.63
	12.50
	41.75
	33.63
	40.51
	21.53
	37.92
	27.15
	36.87

	33.46
	34.07
	32.42
	17.10
	40.45
	24.60
	31.08
	37.78
	18.06
	20.40



We would like to figure out the minimum number of seats that a particular fast food restaurant should have in order to keep their customers satisfied.  One of the problems that we need to figure out is how long each customer stays seated at the table once they have their food.  In order to accomplish this, we will find the underlying distribution given the following times that 50 customers stay at their table (in minutes):   

1.  The first step is to make an EDF for this data.  You can review doing this from a previous lesson. 
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Figure 4:  Example EDF

2.  After constructing an EDF from the data, we want to find the parameter values for each CDF we use in this course that minimize the SSE between the CDFs and the EDF.  Once we have found these values, we will choose the CDF with the lowest SSE to model the data’s underlying distribution.

From this example, we see that the underlying distribution fits a Weibull Distribution, 
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, better than an Exponential Distribution, 
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.  
From Excel, we determined the minimum sum of squares for the Weibull to be 0.1698 and the minimum sum of squares for the Exponential to be 2.4717.  The minimum SSE parameters for the Weibull were 
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 = 2.86.  
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Figure 5:  Comparing the Exponential and Weibull Distributions to the EDF

3.  Use the distribution and parameters found in #2.  With the assumption that this is the underlying distribution, check to make sure that this makes sense by comparing it to the data.


For this example, we assume that the underlying distribution is Weibull (
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 = 2.86).  This means that the cumulative distribution function is 
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Since the sum of squares of the EDF to the CDF is small (SSE = 0.1698 for this example) and in the picture above, the values for the EDF and the CDF are close to each other over the entire interval, then we should conclude that this CDF/PDF does a good job of approximating the population’s underlying distribution.  We are now able to use the CDF and PDF above to calculate probabilities for the population from which the data was taken or to use those distributions in simulations.
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