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ABSTRACT

Real world communication networks are based on an underlying edge probability
structure. These networks are continuously changing and thus reliably estimating network
measures becomes difficult. Therefore a new framework is proposed to determine the un-
derlying probability distribution of specific communication network measures. When two
individuals are socially connected, their communication may vary from day to day, yet their
underlying relationship remains unchanged. In this case, estimates of network measures,
such as density, degree centrality and others may be severely affected by the occurrence or
absence of observed communication ties between individuals.

Two communication networks of groups of mid-career Army officers are modeled
from empirical data using the network probability matrix (NPM) proposed by McCulloh
and Lospinoso (2007). The NPM provides a framework to model a communication network
by estimating the underlying edge probabilities between each dyadic pair in a network. This
framework can model a specific social group regardless of their network topology: random,
small-world, scale-free, cellular, etc. Monte Carlo simulation is used in conjunction with
the NPM to generate 100,000 instances of each communication network. A statistical
distribution is fit to the density measure. This probability distribution can then be used
to detect statistically significant changes in density.

The linear dependence of each agent in the networks is also analyzed to explore
adjacency matrix properties such as: rank, determinant and singular values via singular
value decomposition. We hope to establish an interval for which rank deficient adjacency
matrices occur.
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EXECUTIVE SUMMARY

This research analyzes the underlying distribution of the network measure of den-
sity and analyzes the linear dependence within the adjacency matrix of two real world
communication networks. The empirical data sets are from warfighting simulations at FT
Leavenworth, KS, in 2005 and 2007.

To preform this analysis the Network Probability Matrix (NPM) is used to approx-
imate the underlying network probably structure that determines which agents communi-
cate within a network. This NPM is used in Monte Carlo simulation to simulate 100,000
instances of each network. Using these simulated instances we have shown empirically and
through the central limit theorem that the density of a communication network follows a
normal distribution.

Using hamming average hamming distances the NPM is further validated and is
shown to provide a more reliable and consistent approximation of the underlying network
than the empirical data sets provide from time step to time step.

To analyze the linear dependence of the adjacency matrices the ranks and determi-
nants were explored. It was determined that the ranks follow an underlying distribution and
have a negative correlation with the density of the network.
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I. INTRODUCTION

Presently many structure based frameworks are used in the network science com-
munity for the simulation of networks. These frameworks are based on the presence of
triads, dyads, cliques and other network structural components. However theses frame-
works do not always consider all of the factors that contribute to the dyadic relationship
between agents. In a network an agent may not be interested in the occurrence of a triad
between 3 other agents or that certain agents in the network have dyadic ties. The agent
is mainly concerned with its own dyadic relationships leading to an underlying dynamic
equilibrium in the network., i.e. the underlying edge probability structure that contains a
probability that each agent will communicate with every other agent in the network. For
an example of a dynamic equilibrium, take a network of four agents. Within this network
agent 1 has a 0.5 probability of communicating with agent 2, a 0.75 probability of com-
municating with agent 3, and a 0.0 probability of communicating with agent 4. These
probabilities result from agent 1’s relationship with each other agent in the network and
remain constant regardless of who agent 1 is communicating with at any given time.

The underlying probability structure of a network remains independent of observa-
tions at any instance in time and is constant in the network. A single observation of a tie
does not necessarily designate a relationship between two agents, since the communication
could have been made in error. On the other hand a single observation of the lack of a
tie does not designate that a relationship does not exist, since agents are not continuously
communicating with every agent they have a relationship with at every instance in time.
While a snapshot of the network at an instance in time does not indicate the dyadic rela-
tionships between agents, this snapshot is based on the underlying network probability that
each agent will communicate with every other agent.

A new framework is proposed for the simulation of networks that is based on the un-
derlying probability structure of the dynamic equilibrium. This framework is the network
probability matrix (NPM) proposed by McCulloh and Lospinoso (2007)[1]. The network
probability matrix estimates the edge probabilities for each dyadic pairs in the network.
Probability estimation can vary from a proportion of communications in a series of ob-
servations or be estimated from more complex distributions depending on the amount and
type of data present. This framework can be used to simulate a network regardless of its
topology: random, small-world, scale free, cellular, etc.
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The edge probability structure of the underlying dynamic equilibrium remains con-
stant in the network while the network is at a stable state. However, the underlying prob-
abilities may change as shocks to the network take place. A shock to the system can be
caused by a variety of occurrences, such as two agents being assigned to work together
on a project, the temporary absence of an agent from a network, or a change in leadership
within an organization.

Once a shock takes place the underlying probabilities of communication within the
network will then stabilize as the network returns to it dynamic equilibrium. Using Monte
Carlo simulation with the NPM the underlying distributions of network measures can be
determined while the network is in its dynamic equilibrium. These underlying distributions
can be used in change detection and allow us to statically predict shocks to the network and
determine when significant changes occur.

A. BACKGROUND

Social network analysis is a theoretical framework that examines the relationships
between social entities (e.g. people, groups, organizations, beliefs, knowledge, etc.). These
objects are known as nodes and their connections are referred to as edges. Not all nodes are
connected; however, some nodes are connected with multiple relationships. This network
framework is applicable in a plethora of content areas such as communications, information
flow, and group or organizational affiliation [2]. Social network analysis relies heavily on
graph theory to make predictions about network structure.

1. Erdös-Rnia Random graphs

In 1959 mathematicians Paul Erdös and Alfrd Rnia made revolutionary discoveries
in the evolution of random graphs. In their eight papers Erdös and Rnia evaluate the prop-
erties of random graphs with n vertices and m edges. For a random graph G containing no

edges, at each time step a randomly chosen edge among the
(
n

2

)
possible edges is added

to G. This graph contains N edges and each edge of the
((n

2

)
n

)
= Cn,N possible edges

are equiprobable. Therefore, once an edge is chosen from the
(
n

2

)
equiprobable edges the

next edge is chosen among the remaining
(
n

2

)
− 1 edges and this process is continued so

that if k edges are fixed, all remaining edges have equal probabilities of being chosen [3].
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A general model used to generate random graphs is as follows: ”For a given p, 0 ≤ p ≤ 1,
each potential edge of G is chosen with probability p, independent of other edges. Such a
random graph is denoted by Gn,p where each edge is determined by flipping a coin, which
has probability p of coming up heads [4].” In this model of random graphs each edge has
an equal probability of occurring or not occurring within the graph. This random graph
model also assumes that all nodes in the graph are present at the beginning and the number
of nodes in the network is fixed and remains the same throughout the network’s life. Addi-
tionally, all nodes in this model are considered equal and are undistinguishable from each
other[5].

2. Statistical tests

Utilizing Erdös’ theory of random graphs as well as the class of uniform distri-
butions associated with these graphs, Holland and Leinheart [6] developed a variety of
statistical tests for the analysis of social networks. Using a uniform distribution these tests
spread the total probability mass equally over all possible outcomes, therefore giving an
equal probability to the existence of an edge between any two nodes in the network. These
statistical tests were used to develop a reference frame or constant benchmark to which ob-
served data could be compared in order to determine how ”structured a particular network
was, or how far the network deviated from the benchmark [7].”

3. Strength of weak ties

In 1969, Mark Granovetter proposed the strength of weak ties. In Granovetter’s
social world our close friends are often friends with each other as well, leading to a society
of small, fully connected circle of friends who are all connected by strong ties. These
small circles of friends are connected through weak ties of acquaintances. In turn, these
acquaintances have strong connections within their own circle of friends. The weak ties
connecting circles of friends play an imperative role in numerous social activities from
finding a job to spreading the latest fad. Close friends who have strong connections are
often exposed to the same information, therefore, weak ties are activated to bridge out of
our circle of friends and into the outside world [8].

5



4. Small World Networks

Building off of Granovetter’s model Duncan Watts and Steven Strogatz [9] devel-
oped the clustering coefficient dividing the number of links of a node’s first order connec-
tions by the number of links possible between these first order connections. This clustering
coefficient illustrates the interconnectivity of a circle of friends, where a value close to 1
demonstrates all first order connections of a node are connected with each other. Con-
versely a value close to 0 shows that a nodes first order connections are only connected
through that node.

The clustering coefficient of the Watts-Strogatz small world network model recon-
ciles clustering with the characteristics of random graphs. According to the Watts-Strogatz
model each node is directly connected to each one of its neighbors resulting in a high
clustering coefficient. By clustering alone, this model has a high average path length con-
necting two random nodes. However, by adding only a few random links between nodes of
different clusters the average separation between nodes drastically decreases. This model
while containing random links between nodes keeps the clustering coefficient relatively
unchanged[10]. While the Watts-Strogatz model originally did not add extra links to the
graph but randomly rewired some of the links to distant nodes the addition of random links
was proposed by Watts and M. Newman.

5. Scale Free Networks

According to Albert-Lszl Barabsi the random graph theory of Erdös and Rnia was
rarely found in the real world. Barabsi has found that many real world networks have some
nodes that are connected to many nodes and others that are connected to few nodes. His
empirical tests showed that the distribution of the number of connections in many networks
all followed a power-law distribution. These networks lack the characteristic scale in node
connectivity present in random graphs, and therefore, are scale-free [11]. As a result of the
number of connections following a power distribution, hubs are created among nodes in the
network. A hub is a highly connected node that contains most of the links in the network
and creates short paths between any two nodes in the network.

Barabsi’s model of scale-free networks is constructed around two ideas–growth and
preferential attachment. For each time step a new node is added to the network. This
illustrates the principal that networks are assembled one node at a time[5]. Assuming that
each new node connects to the existing nodes of the network with two links, the probability

6



that the new node will choose a given node is proportional to the number of links the chosen
node has. Therefore, a node with more links has a higher probability of being connected to.
This creates a ”rich get richer” scenario where nodes with many links continue to grow by
collecting new links while newer nodes with lower degrees do not collect as many links[5].

Based on a scale-free network model where nodes make connections based com-
pletely on preferential attachment the probability that a new node will connect to a node

with k links is given by
k∑
i ki

[11]. This causes the first nodes in the network to develop

into hub nodes due to having the longest time to collect links. However it is not always the
case that the first nodes in a network develop into the biggest hubs.

6. Fitness Model

In order to account for newer nodes overtaking older nodes as hubs, Barabsi con-
structed the fitness model. Fitness is a node’s ability to collect links relative to every other
node in the network and is based on competition in complex systems [12]. In this new
model a node’s attractiveness is not determined completely by its number of links, but
preferential attachment is driven by the product of the number of links a node has and its
fitness. In this model the probability a new node will connect to a node with k links and a

fitness of η is
kη∑
i kiηi

[12]. Nodes in this model acquire links following the power law dis-

tribution of the scale-free model, however, the dynamic exponent, β, which determines how
fast a node acquires new links, is different for each node. This is proportional to a node’s
fitness, therefore, a node that is twice as fit as another node will obtain nodes twice as fast
because its dynamic exponent is twice as large. This ”fit-get-rich” model allows nodes to
become hubs based on their attractiveness regardless of when they enter the network[12].

7. Winner Take All Model

Contrary to the scale-free network model Barabsi developed the ”winner take all
model,” which strongly portrays monopolies. The ”winner-take-all-model” consists of a
single hub and many tiny nodes. This network develops a star topology and nodes do not
acquire links following a power law distribution.

7



8. Network Probability Model

Ian McCulloh and Joshua Lospinoso (2007)[1] proposed a new framework for ran-
dom communication networks over time, based on empirical data collected on real world
networks. This new framework, estimates distributions for the time between communica-
tion messages, then based on a given time interval the probability of an edge occurring
in the network is calculated for every ordered pair of nodes. These probabilities can be
constructed through multiple techniques. To derive the probabilities from empirical data
collected over several time periods, a proportion of edge occurrences, eij , can be used to
estimate probabilities for each cell in the adjacency matrix aij . These probabilities are
displayed in a network probability matrix where each cell is the probability that node i
communicates with node j. This frame work is capable of generating networks that are
similar to scale free networks. Thus, this model can be used to construct any network
topology: Erdös-Rnia random, Watts-Strogatz small world, Albert-Barabsi scale-free, star,
cellular, ect. The McCulloh-Lospinoso model is estimated from empirical data and can be
used to simulate realistic observations of relationships in specific organizations.

9. Distribution of Network Level Measures

Using the McCulloh-Lospinoso NPM framework Daniel Baller, Joshua Lospinoso,
Ian McCulloh and Anthony Johnson (2008)[13] established a method to estimate the dis-
tribution of specific communication network measures. This method uses the NPM to
simulate a communication network from empirical data. Based on these simulations the
underlying distribution for density of a communication network of 68 field grade army
officers has been determined to be normally distributed.

B. DATA

This research evaluates the density of two real world networks in order to find the
underlying distribution of network density. The first data set was collected from a war fight-
ing simulation in FT Leavenworth, KS in April 2007 by Craig Schreiber and Lieutenant
Colonel John Graham. There were 99 participants in the experiment that were monitored
over the course of four days while data was being collected. This 99 agent data set was then
cut down to 68 agents. These 68 participants served as staff members in the headquarters
of the brigade conducting the exercise. The data displays the interactions of agents in a

8



network which was collected by monitoring communications throughout the simulation.
The second data set is from a war fighting simulation in FT Leavenworth, KS in

2005, also collected by Craig Schreiber and Lieutenant Colonel John Graham. This data
set contains 156 agents that were monitored over the course of nine iterations of the sim-
ulation. This data exhibits the communication agents in the network that was collected by
monitoring communications throughout the simulation. For the duration of this paper the
Ft. Leavenworth 2007 Data will be referred to as Net07 and the Ft. Leavenworth 2005 data
sets will be referred to as Net05.
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II. METHODS

This research explores the distribution of the density measure in two simulated
networks using the network probability matrix.

Below is an outline of the approach pursued in this study the following methodology
was used for each data set:

1. Construction of The NPM

In order to simulate the network it is necessary for a network probability matrix
(NPM), to be created. Once the datasets for Net07 were trimmed of the scripted agents, they
were symmetrized across the main diagonal in the Organizational Risk Analyzer (ORA) to
account for the lack of directionality of communication in the data. Symmetrizing the data
also corrects for the informant error of agents not reporting other agents they have commu-
nicated with. Next, the datasets from Ft. Levenworth 2007 were dichotomized to remove
the weighting set by the participants. Once the data is dichotomized a one represents com-
munication between two agents and a zero represents the lack of communication between
two agents. To construct the NPM all eight data sets were compiled into a single data set
consisting of the total number of discrete time periods that each agent communicated with
each other agent. This matrix was then divided by the number of discrete time periods to
determine the underlying edge probabilities for the network in dynamic equilibrium.

The Net05 data sets were collected as unweighed data so they did not have to be
dichotomized. It was also unnecessary to trim these data sets. The nine data sets from
this network were symmetrized across the main diagonal in ORA to correct for informant
of agents not reporting other agents they have communicated with. To construct the NPM
all nine data sets were compiled into a single data set consisting of the total number of
discrete time periods that each agent communicated with each other agent. This matrix
was then divided by the number of discrete time periods to determine the underlying edge
probabilities for the network in dynamic equilibrium.

2. Simulation Generation

The NPMs were then used as the edge probabilities for Monte Carlo simulations
of these two networks. In these simulations a random number was generated for each

11



edge. If the random number is less than the edge probability then the edge is added to
the graph. This algorithm was used to create 100,000 instances of the network. Once
100,000 instances of the network were completed the average density was taken from each
simulation to create a dataset of 100,000 network densities for each network.

3. Reliability and Consistency

To analyze the reliability and consistency of our simulations hamming distances
were utilized as a metric for the differences between two binary adjacency matrices. Using
the NPM, 60,000 instances of each network were simulated. The average hamming distance
from each empirical data set to every other empirical data set and from each simulated
network to each empirical data set were then calculated. These average hamming distances
were then analyzed using a t-test. The results of this test indicate whether the NPM predicts
an instance of the empirical network with more or less error than the error introduced over
time.

4. Distribution Fitting

The normal distribution was fit to the data of each network using Maximum Like-
lihood Estimation. An Anderson-Darling goodness of fit test and a comparison of the
estimated cumulative distribution function to the data’s empirical distribution function in-
dicated a very good fit for the data. In addition, since the density is a linear function of the
average node degree, the central limit theorem would suggest that the density is normally
distributed for each network, given certain assumptions.

12



III. LINEAR DEPENDENCE OF THE AGENTS

Utilizing the NPMs created for the study of the density an analysis of linear de-
pendence was conducted. To analyze the linear dependence of each agent the NPMs were
used as the edge probabilities for Monte Carlo simulations of Net07 and Net05. In these
simulations a random number was generated for each edge. If the random number is less
than the edge probability then the edge is added to the graph. This algorithm was used
to create 100,000 instances of each network. Once the 100,000 instances of each network
were created the ranks and determinants of each network were calculated to create datasets
of 100,000 ranks and determinants for each network.

13
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IV. RESULTS

A. DISTRIBUTION OF THE DENSITY

Using the t-test, it is illustrated that the networks simulated using the NPM have a
smaller average hamming distance to the empirical data sets than each empirical data set is
to each other for both the Net07 network and the Net05 network. This is evidence that the
simulated networks give a more reliable and consistent approximation of the underlying
distribution. The results of the paired t-test for both networks are shown below in Table
1 and Table 2 respectively. In each table column one is the average hamming distance
from each empirical data set to every other empirical data set and column three is the
average hamming distance from 60,000 networks simulated with the NPM to each of the
empirical data sets. The p-value of each test is approximately zero indicating that there
is a statistically significant difference between the empirical hamming distances and the
simulated hamming distances. While the t-test is not statistically significant for data sets 6,
8, and 9 of Net05, since the p-values are over 0.05, in each case the mean hamming distance
to the simulated networks is less to the mean hamming distance to the empirical networks,
showing that these cases all follow the trend of the other data sets. Additionally, since it is
shown that the simulated networks have, on average, less Hamming distance from each of
the empirical data sets than the empirical data sets have from each other.

This test shows that if you select one of the empirical adjacency matrices there is
more error in predicting it from the remaining empirical data sets then from predicting it
with the NPM.

Once the reliability and consistency of the simulations created using the NPM were
confirmed, the distribution of the density could be determined. Since density is a linear
function of a sample average of a network statistic according to the formula

density =
avg degree

(n− 1)

and the sample sized, n, is greater than 30 for each network the central limit theorem
can be used to determine that the underlying distribution of network density is the normal
distribution, with µ = 0.0984374 and σ = 0.00396148 for Net07 and µ = 0.0476886 and
σ = 0.000972361 for Net05. This is also shown in Figure 1 and Figure 2 respectively.

Each graph shows the stepwise plot of the 100,000 densities overlaid with the CDF
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Data
Set

Mean Ham-
ming Dis-
tance to
Empirical
Networks

Standard
Deviation of
Hamming
Distance to
Empirical
Networks

Mean Ham-
ming Dis-
tance to
Simulated
Networks

Standard
Deviation of
Hamming
Distance to
Simulated
Networks

Paired
t-test

p-value

1 409.286 38.560 358.094 12.775 3.755 0.00
2 365.857 18.298 320.097 12.739 7.073 0.00
3 365.857 38.247 320.164 12.793 4.450 0.00
4 377.857 36.100 330.674 12.773 3.489 0.00
5 375.286 38.159 328.377 12.796 3.675 0.00
6 349.857 207.944 306.078 12.785 3.245 0.00
7 373.8571 48.451 327.0728 12.826 2.731 0.01
8 362.4286 55.635 317.1509 12.778 2.302 0.02

Table IV.1 t-test of Average Hamming Distances for Net07 Data

of the normal distribution. The sum of squared error of this model for Net07 is 9.60609 and
the sum of squared error of this model for Net05 is 1.41659. These small sums of squared
error reinforce the models shown above in Figure 1 and Figure 2.

A histogram of the densities for Net07 and Net05 are shown in Figure 3 and Figure
4 respectively.

It is shown in Figure three and Figure 4 that the densities of Network 1 and Network
2 both fit a normal curve. This further reinforces that the densities for both Network 1 and
Normal 2 follow a normal distribution. Additional Normality test can be seen in Appendix
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Figure 1. Stepwise Plot of Density Data for Net07 and CDF of the Normal Distribution
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Data
Set

Mean Ham-
ming Dis-
tance to
Empirical
Networks

Standard
Deviation of
Hamming
Distance to
Empirical
Networks

Mean Ham-
ming Dis-
tance to
Simulated
Networks

Standard
Deviation of
Hamming
Distance to
Simulated
Networks

Paired
t-test

p-value

1 1445.000 84.774 1284.338 23.747 3.467 0.001
2 1394.750 67.487 1239.647 23.703 3.765 0.000
3 1296.125 85.436 1151.946 23.671 3.287 0.001
4 1315.875 153.533 1169.665 23.718 2.421 0.015
5 1191.250 112.324 1058.990 23.667 2.732 0.006
6 1204.875 207.944 1071.116 23.623 1.912 0.056
7 1167.375 190.431 1037.713 23.695 1.980 0.048
8 1159.625 204.465 1030.815 23.732 1.888 0.059
9 1170.125 195.266 1040.142 23.618 1.953 0.051

Table IV.2 t-test of Average Hamming Distances for Net05 Data

A.

B. ANALYSIS OF LINEAR DEPENDENCE

Analyzing the determinants and ranks of the of Net07 data 17,650 of the simulated
instances of the network had a nonzero determinant. In these instances each row of the
adjacency matrix is linearly independent and the rank is 68 with no isolates in the network.
The remaining 82,344 simulated instances have a determinant of zero and at least one row
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0.8

1.0

Figure 2. Stepwise Plot of Density Data for Net05 and CDF of the Normal Distribution
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Figure 3. Histogram of Density for Net07
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Figure 4. Histogram of Density for Net05
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Figure 5. List Plot of Sorted Determinants for Net07

Figure 6. List Plot of Sorted Ranks for Net07

in the adjacency matrix that is linearly dependent. Additionally, these instances have a
rank ranging from n− 1 to n− 7 where n− rank is the number of isolates in the network.
List plots of the sorted determinants and ranks for Net07 are shown in Figures 5 and 6
respectively.

Analyzing the determinants and ranks of the Net05 data all 100,000 of the simulated
instances of the network had a determinant of zero and least one row in the adjacency
matrix that is linearly dependent. Additionally, these instances have a rank ranging from n

to n− 14 where n− rank is the number of isolates in the network. A list plot of the sorted
ranks for Net05 is shown in Figures 7.

In this analysis it was noticed that the Net05 data having a density approximately
half as large as the Net07 data has a maximum number of islets that is twice as large
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Figure 7. List Plot of Sorted Ranks for Net05
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Figure 8. Stepwise Plot of Rank Data for Net07 and CDF of the Normal Distribution

indicating a negative correlation between the density and the number of isolates. The ranks
for each network follow a normal distribution which further supports this finding. Figures
8 and 9 show the stepwise plots of Net07 and Net05 respectively shown against the CDF
of the normal distribution.
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Figure 9. Stepwise Plot of Rank Data for Net05 and CDF of the Normal Distribution
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V. CONCLUSION

This research validates the use of the NPM for simulating networks based on empir-
ical data. based on the results of this research the NPM provides a reliable and consistent
network simulation that is a strong framework for analysis.

It is also determined that n − rank of the adjacency matrix will show the number
of isolates within the network and that the maximum number of isolates in a network is
dependent on the density.

This research can be extended in at least three aspects: assessing the underlying
distribution for agent level statistical measures, assessing the underlying distribution for
other network level statistical measures, and change detection. This allows changes and
shocks in the network to be statistically predicted.
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APPENDIX A. ADDITIONAL STATISTICAL TESTS

Figure 10. Box Plot of Densities for Net07
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Figure 11. Box Plot of Densities for Net05
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Figure 12. Normal Q-Q Plot of Densities for Net07
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Figure 13. Normal Q-Q Plot of Densities for Net05
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