[image: image48.png]

UNITED STATES

MILITARY ACADEMY

WEST POINT, NEW YORK
Implementing Localization Techniques in a Robot Search Visual Feedback System

by

Cadet Sierra Okolo

May 2008

Thesis Advisor:
MAJ Jong Chung

Second Reader:
Dr. Keith Erickson

HONORS THESIS

THIS PAGE INTENTIONALLY LEFT BLANK

	PRIVATE
PRIVATE

REPORT DOCUMENTATION PAGE
	Form Approved OMB No. 0704-0188

	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

	1. AGENCY USE ONLY (Leave blank)

	2. REPORT DATE

May/2008
	3. REPORT TYPE AND DATES COVERED
 Senior Thesis (Honors)

	4. TITLE AND SUBTITLE: Implementing Localization Techniques in a Robot Search Visual Feedback System

	5. FUNDING NUMBERS

	6. AUTHOR(S) : Cadet Sierra Okolo
	

	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

United States Military Academy

West Point, NY 10996-3165
	8. PERFORMING ORGANIZATION REPORT NUMBER

	9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
	10. SPONSORING/MONITORING

 AGENCY REPORT NUMBER

	11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

	12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement (mix case letters)
	12b. DISTRIBUTION CODE

	13. ABSTRACT (maximum 200 words)

The simultaneous localization and mapping (SLAM) is a technique mobile robots can use to successfully navigate through and learn about their environment. Robots with the capability to perform SLAM are ideally suited for search and rescue operations. This skill makes them great candidates to be implemented into warfare technology such as the US Army’s Future Combat Systems. This thesis introduces a robot search visual feedback system (RSVFS) that focuses on the localization part of the simultaneous localization and mapping (SLAM) problem to efficiently direct a LEGO NXT robot to a target. The system is comprised of a LEGO MINDSTORMS NXT robot development kit, a webcam, a test platform, and an application written in Java. The main functions of the RSVFS addressed here are tracking robot location, handling error, and compensating for discrepancies. The main mathematical techniques employed stem from topics such as control theory, statistical error analysis, binary grid mapping, odometry, Bayesian statistics, and Bayes filter. Analysis of system performance is presented as well as additional ideas for future research.

	14. SUBJECT TERMS
	15. NUMBER OF PAGES

	
	16. PRICE CODE

	17. SECURITY CLASSIFICATION OF REPORT
Unclassified
	18. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified
	19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified
	20. LIMITATION OF ABSTRACT

UL

THIS PAGE INTENTIONALLY LEFT BLANK

IMPLEMENTING LOCALIZATION TECHNIQUES IN A ROBOTIC SEARCH VISUAL FEEDBACK SYSTEM

Sierra C. Okolo

CDT, Signal Corps

B.S., United States Military Academy, 2008

Submitted in partial fulfillment of the

requirements for the degree of

BACHELOR OF SCIENCE

in OPERATIONS RESEARCH
with Honors

from the

UNITED STATES MILITARY ACADEMY

May 2008

Author:

Sierra C. Okolo

Approved by:

MAJ Jong Chung
Thesis Advisor

Dr. Keith Erickson
Second Reader/Co-Advisor

LTC Michael McNett

Programming Advisor

Colonel Michael Phillips

Chairman, Department of Mathematical Sciences

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT
Simultaneous localization and mapping (SLAM) is a technique that enhances a mobile robot’s ability to maneuver and navigate in an unknown environment. Robots with the capability to perform SLAM are ideally suited for search and rescue operations and great candidates to be selected for implementation into warfare technology such as the US Army’s Future Combat Systems. This thesis introduces a robot search visual feedback system (RSVFS) that focuses on the localization part of the simultaneous localization and mapping (SLAM) problem to efficiently direct a LEGO NXT robot to a target. The system is comprised of a LEGO MINDSTORMS NXT robot development kit, a webcam, a test platform, and an application written in Java. The main functions of the RSVFS are tracking robot location, handling error, and compensating for discrepancies. The main mathematical techniques employed stem from the topics of control theory, statistical error analysis, binary grid mapping, odometry, Bayes theory, and Bayes filter. An analysis of system performance is presented as well as additional ideas for future research.
KEYWORDS: robotics, mobile robots, search robots, error analysis, binary grid occupancy techniques, odometry, control theory, navigation, simultaneous localization and mapping, Bayes theory, Bayes filter.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS
11
Introduction

32
System Overview

32.1
lego nxt robotic toolkit

42.2
Test platform

52.3
Java APPLICATION

52.4
Visual positioning system

93
Process Algorithm

93.1
Basic Control system

103.2
application structure and the feedback loop

123.3
controller methods

123.3.1
Initializing the Regions

153.3.2
Calibrating the Compass Sensor

163.3.3
User Prompts

183.4
Input class

193.5
input command

193.5.1
Color Discrepancy

213.5.2
Selective Searches

233.6
Error handler methods

233.6.1
User-defined Threshold with Selective Searches

233.6.2
Handling the Phenomena of Region Jumping

294
Additional Efforts

294.1
occupancy grid techniques

304.1.1
Ultrasonic Sensor

314.2
Path determination: Applications in Graph Theory

335
Results

335.1
Sensor performance and results

335.2
vps performance results

335.2.1
Color Sample Runs

355.2.2
Statistical Performance

385.2.3
Performance of Error and Command Measures

395.3
effeciency of performance

395.3.1
Efficiency Overview

415.3.2
Efficiency of Key Algorithms

436
Conclusions and Future Research

65LIST OF REFERENCES

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES
4Figure 2.1: A rough sketch depicting the dimensions and setup of the test platform.

6Figure 2.2: A typical experimental setup where a color swatch is placed in a user-designated sampling region and the same color is placed on the robot’s back. The VPS uses helper methods within the application to localize the robot.

9Figure 3.1: A basic control system.

12Figure 3.2: The control structure of the RSVFS.

13Figure 3.3: Algorithm for initializing the grid space regions for the camera.

13Figure 3.4: The numbering system for a W(10,10) case.

15Figure 3.5: The robot’s compass sensor original coordinate system.

16Figure 3.6: A sample calibration method. It returns the number of degrees that all robot sensor readings must be adjusted to have the same reference as the test platform.

16Figure 3.7: The robot’s frame of reference versus the world’s frame of reference.

17Figure 3.8: The webcam view of the robot world with the color standard placed in region three.

17Figure 3.9: The graphical user interface displaying initial location in yellow and target location in red.

18Figure 3.10: Finding displacement between regions 1 and 8 in a W(5,4) case.

20Figure 3.11: The mx function provides a helper function to determine color discrepancy statistics.

21Figure 3.12: Nine cases for adjacency.

22Figure 3.13: The case statements furnished for the nine cases.

25Figure 3.14: Bayes filter algorithm that updates the belief of the robots state through incorporating in previous state data.

26Figure 3.15: The acceptance region for finding the probability that the robot is in the red dot state given it is in the yellow dot state. The acceptance region is highlighted in green and the rejection region is highlighted in red.

29Figure 4.1: A sample occupancy grid, where regions marked in black are considered blocked.

34Figure 5.1: Three runs depicting the erratic color values returned of the color standard as time progressed and a stabilization around 4000 milliseconds.

35Figure 5.2: Here the robot is shown contained in region 9 and the region standard in region 3 in a W(8,8).

36Figure 5.3: The robot overlapping two regions.

37Figure 5.4: The robot in between two regions. The result of the compatibility test is featured in Table 5.2.

40Figure 5.6: The linear function O(n) provides an upper bound for the log function (log n + k = O(n)) because there exist some value for n0 (n0 =1) and c (c=5) that makes the relationship true for all n > n0.

40Figure 5.7: An exact order relationship. This relationship requires a stronger proof since the function g(n) must provide a lower and upper bound for T(n) for all n > n0.

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

36Table 5.1: Mean compatibility values, where the last column indicates regions with no affiliation to the robot’s current state.

37Table 5.2: Compatibility values for the state depicted in Fig. 5.4.

38Table 5.3: Five different waypoints used for testing where (a,b) = (degree, distance).

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

I would like to thank MAJ Jong Chung for devoting his time to helping me with this project. He hand built the test platform that was used to test the robot’s performance in a simulated search environment. He also devoted his time to help me edit the paper and directed me to the resources I needed to complete this project. I would also like to thank Dr. Keith Erickson, who spent countless hours helping me to devise an outline for the paper and to revise my work. The outline we worked through gave this paper organizational structure and set me down the path towards turning in solid and legitimate work. In addition, I would like to thank LTC Michael McNett. He was an invaluable resource because he would sit down with me in the beginning phases of my project to teach me how to write Java. He also provided programming advice while I was writing the actual code for the system. LTC Thomas Meyer also helped edit the paper and his work was greatly appreciated. The equipment used in this research project was provided by funding from the Omar Nelson Bradley Foundation given to MAJ Chung.
THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

The US Army, currently developing and fielding Future Combat Systems (FCS), can greatly benefit from the versatility of the robotic search visual feedback system (RSVFS). The system focuses on the localization part of the simultaneous localization and mapping (SLAM) problem to efficiently direct a LEGO NXT robot to a target using a controlled feedback loop. The system is comprised of a LEGO MINDSTORMS NXT robot development kit, a visual positioning system, a test platform, and a Java application. These items are systematically combined to produce a robot with the ability to navigate in a static environment. Java functions from the library iCommand, a LEGO NXT robot specific library, enable the visual image of the robot’s world to be sectioned into regions. The visual positioning system (VPS) then compares RGB color values between the regions in the robot world to find the region with the minimum amount of discrepancy to the RGB color value of a user-designated sample region. This region contains the same color that is located on the back of the robot. Therefore, the region found with the minimum color discrepancy to the user-designated sample region is the most probable location of the robot. The average maximum color compatibility value (compatibilityValue = 1 - discrepancyValue) when the robot was centered in a region was .93 + .01 and the average compatibility value for non-affiliated regions was .74 + .04.
Issues arise when the robot is located between regions. The error of VPS robot localization increases; therefore, a feedback loop was designed to check and compensate for this type of error. The two methods in particular that perform these functions are a user-defined threshold function and a region jumping handler function. The threshold function checks regions adjacent to the last known robot location, which maintains program efficiency. If the maximum compatibility value returned fails to meet the user-defined threshold then all regions are inspected. The VPS returning a non-adjacent region to the last known location of the robot is termed region jumping. The region jumping error handler uses odometry as a tool to handle this situation. Odometry is used to estimate the robot’s position, Bayes theorem is used to predict the probability of the odometry estimate, and other statistical tests are used to measure the significance of the prediction. The belief regarding the robot’s position is updated based on these calculations. This system is excellent because it provides a research platform that can be expanded to more robust systems with similar underlying dynamics. Mathematical subjects and techniques addressed in this research include control systems, error analysis, dead reckoning, localization, Bayes theorem, and Bayes filter. Additional work for future research opportunities addresses the integration of obstacles into the problem. Solutions presented include modeling the regions as graphs and traversing the obstacle-ridden environment through known search algorithms.

1 Introduction

The US Army currently seeks to incorporate robots into its Future Combat Systems to maintain technological and military superiority on the battlefield. The US Army’s chronic want for intelligent, functional, warfare robots make this area ripe for research and testing. Integration of robots into the battle sphere can address deficits in military personnel safety and military unit strength. Robotics technology is already being used to improve current weapon systems, such as the automation of target acquisition systems at all echelons.
 Problems robots can address are the deaths of soldiers in non-mission related tasks, such as searching for missing personnel or equipment in a dangerous environment. In addition, autonomous, warfare-oriented, robotic search systems are relatively nonexistent, and budget constraints deter many interested independent researchers from creating, improving, and testing such devices. Solutions to these issues respectively are one, increasing usage of robot search technology in battle for missions that could compromise a soldier’s safety; two, increasing investment into the improvement of existing robotic systems; and three, encouraging independent competitive-driven research with the use of robotic toolkits such as LEGO NXT robotic development toolkit to solve real warfare issues. Toolkits such the one made by LEGO NXT provide an economical simulation test bed and functions that can mimic that of a war-caliber robot. This thesis presents the creation of a robotic search visual feedback system (RSVFS) that focuses on the localization aspect of the simultaneous localization and mapping (SLAM) problem in order to direct an inexpensive LEGO NXT robot to a target in a simulated search and rescue environment.
THIS PAGE INTENTIONALLY LEFT BLANK

2 System Overview

To locate a target, a robotic search system such as the RSVFS must be able to track its location, process data feedback, and calculate how to navigate to a target. The components of the RSVFS that support these functions include a LEGO NXT robotic toolkit, a test platform, a Java-based application, and a visual positioning system (VPS).

2.1 lego nxt robotic toolkit
Items from the LEGO NXT robotic toolkit used in this project include the programmable brick, two actuators, and a compass sensor. The LEGO NXT robotic toolkit is a product of LEGO MINDSTORM NXT. The toolkit gives the user great flexibility in designing and constructing a robot. The LEGO NXT programmable brick contains three motor output ports and four sensor input ports.
 In addition, the programmable brick has Bluetooth capabilities, an Amtel 32-bit ARM processor, 64 KB of RAM, and 256 KB of flash memory.
 Direct user interaction with the brick can occur via a simple black and white, bitmapped screen on the brick.
 The processor and flash memory of the brick do not constrain the system because all processing of information is done on a laptop computer. The actuators, or motors, have built in tachometers, electromagnetic devices that produce an output proportional to the rotational rate of the wheels to determine displacement,
 and servo actuators, devices that modify the power delivered to the motor to control speed. The compass sensor is used to determine the robot’s directional heading.
2.2 Test platform
The performance of the RSVFS was tested using a test platform. The test platform consists of two large rectangular wooden boards that form the floor space measuring 1.83 x 1.83 m with 6 cm diameter wheels situated at the bottom corners of the platform.
[image: image1.jpg]
Figure 2.1: A rough sketch depicting the dimensions and setup of the test platform.

Two vertical wooden skinny boards on both sides of the rectangular boards secure the two boards together and are held in place through nails fastened to small flat rectangular boards situated on the ground. The vertical wooden beams have a hole drilled near the top to suspend a webcam from a metal pole inserted through the holes.

A Micro Innovations zoom 2.0 webcam is used to capture the robot world, or the floor space of the test platform within the webcam’s view. Any space beyond the view of the webcam is considered to be an infeasible region for the robot. Data is sent from the webcam via USB cable strung around the metal horizontal pole down the side of the wooden beam back to the computer. The webcam is situated at a height of 1.97 m above the floor space, which corresponds to a robot world equivalent of 1.30 x .93 m.

2.3 Java APPLICATION
The application driving the RSVFS is implemented in Java. The program, Eclipse IDE, an integrated development environment, used to develop the application, provided useful features such as a built-in debugger and improved editing capabilities. The application is designed to request information from the VPS, process the information, and relay commands back to the robot. The application is made possible through three main Java libraries that support it: java.awt, java.io, and java.util. They provide basic methods that handle loop iterations, store useful arrays, and create a graphical user interface (GUI). iCommand, an NXT specific programming library, allows users to extend normal Java functions to robot specific functions. iCommand uses Bluetooth technology to send commands and receive feedback from the robot via radio waves. The main iCommand interface used is ColorListener and the two main classes used from the iCommand library are the Navigation and Vision class. The Navigation class controls the actuators and sensors and the Vision class supports the VPS.
2.4 Visual positioning system

The VPS is enabled through a webcam and methods within the main application. Methods in the main application request visual data from the webcam and process this data to find the robot’s location. The concept of a VPS is similar to that of a global positioning system (GPS) except that the VPS uses color to localize an object. A procedure sections the visual data from the webcam into a user-defined number of rectangular regions. An arbitrary region is designated to be the region where a color swatch is placed; this color is also secured to the back of the robot. ColorListener, a Java interface, then enables the application to return the RGB color values of each region and find the one with the closest match to that of the color swatch. It is vital that the room has sufficient and consistent lighting, and the color swatch’s color provides a stark contrast to the color of any other object contained in the robot world. Sufficient and consistent lighting ensure that the color values detected are relatively stable and distinguishable, which increases the positive identification rate of the robot’s location. The white paper that covers the floor space of the robot world and red color swatch that covers the user-designated sampling region returns RGB color values of (142, 107, 107) and (124, 46, 44) respectively. These values significantly differ from (255, 255, 255) and (255, 0, 0), the colors of white and red, due to the lighting in the room.

[image: image2]
Figure 2.2: A typical experimental setup where a color swatch is placed in a user-designated sampling region and the same color is placed on the robot’s back. The VPS uses helper methods within the application to localize the robot.

Helper functions and procedures assisted the VPS in finding the region with the least color discrepancy, which should theoretically be the location of the robot, from the color of the swatch. Providing information to the application regarding the robot’s most probable location makes the VPS part of the RSVFS’s larger feedback loop.
THIS PAGE INTENTIONALLY LEFT BLANK

3 Process Algorithm
The RSVFS employs a feedback loop. The set of applications operating the VPS are used to estimate the robot’s regional location and odometry techniques calculate how the robot should move. Error handlers check VPS estimates against dead reckoning reference values and confirm or change the belief regarding the location of the robot.
3.1 Basic Control system
The RSVFS design creates system autonomy because it forms a feedback loop, or control system. The feedback loop initiates commands, drives primitive processes, and adjusts the system to compensate for error. The lowest level of control ensures that items such as the motor, wheels, and body of the robot are kept stable. The intermediate level of control drives navigation, while the highest level of control enables robot learning, planning, and decision making.
 Figure 3.1 shows a basic control system or feedback loop.

[image: image3.emf]+

ControllerError

Controlled System

(Plant)

Reference

-

Input commandOutput

Figure 3.1: A basic control system.
The basic components of a control system are the input command, the controller, the controlled system, the reference, the error, and the output. A planner determines based on triggers and conditions, how and when input commands will be executed. The controller digests the command and sends signals to the controlled system, or the actuators and sensors. The output of the system is tested against a reference value and the controller adjusts the system based on measured error. The process is repeated till an end state is triggered.
3.2 application structure and the feedback loop
Methods within the application, which controls the RSVFS, can be divided into four main subcategories. They are the input command, the controller, the reference, and the error processing methods. The main class is the input command. It decides based on set conditions when to invoke certain methods. The controller methods process incoming data, while the error processing methods determine the degree of error and correct the system. The algorithm for the RSVFS is as follows:

Robotic Search Visual Feedback System Steps:

1. Initialize Regions

2. Calibrate Compass Sensor
3. Prompt User for Color Swatch Region Location

4. Get the RGB Color Value of Color Swatch Region
5. Prompt User for Threshold Value
6. Prompt User for Target Region
7. Rotate Robot to Face Target Region
8. Move Robot Forward

9. Track Robot Region Location (using Odometry) for Reference

10. If First Time through Loop

a. Search All Regions to find Region with the Best Compatibility Rating to the Color Swatch

b. If Robot Region Location found is not Adjacent to Last Known Robot Region Location

i. Run Region Jumping Error Handler

ii. Update New Belief of Robot Region Location

11. Else

a. Perform a Selective Region Search to find Robot Region Location

b. If Maximum Compatibility Rating < User-Defined Threshold then

i. Search all Regions

ii. Return Region with Maximum Compatibility Value

c. If Robot Region Location Returned is not Adjacent to Last Known Robot Region Location

i. Run Region Jumping Error Handler

ii. Update New Belief of Robot Region Location
12. Repeat steps 7-11 till Robot Region Location Equals Target Region
The controller methods perform steps one through six, the input command controls specifically steps six through nine, the error handler performs steps ten through twelve, and the reference methods are dispersed throughout.

[image: image4.emf]Main

User Defined

Threshold

ReferenceError Processing

Position Tracking

Controller

User Interface

Input Command

Region JumpingScreen Shot

VPS

Key variable

Initialization

Figure 3.2: The control structure of the RSVFS.
3.3 controller methods
The controller methods initialize the regions, calibrate the sensors, and gather information concerning key variables in the system.
3.3.1 Initializing the Regions

Regions are initialized through two key procedures: addColorListener and addRectRegion. The function addColorListener sectioned the visual image data from the camera into user-defined rectangular region spaces, which will be referred to as a robot world. A unique number identifier between 1 and 1000 indexed each region. The drawback is that the number of regions chosen is indirectly proportional to the computational efficiency of the application. The robot should be able to relatively fit within a region (occupation of 90-95% of the region) without overlap into another region.
[image: image5.png]
Figure 3.3: Algorithm for initializing the grid space regions for the camera.

The first region starts at the bottom left hand corner, and the following regions go from left to right then bottom to top, so that the last region is contained in the top most right corner. A world with n columns and m rows will be defined as a W(n,m) case.
[image: image6.png]
Figure 3.4: The numbering system for a W(10,10) case.

The Cartesian coordinate (x,y) in pixels of the starting point of the bottom left hand corner of the rectangular region and its girth are required to create a region. The location in the Cartesian coordinate (x,y) of regionij corresponds to the region in the ith column and jth row. The variable reg and pixel are constants signifying the number of user designated pixels and regions across the x or y pixel plane. In the experiments, the pixel dimensions are set to 320 by 640 and a W(8,8) case is used.
[image: image49.jpg]
[image: image7.wmf])

1

(

)

(

-

´

=

i

reg

pixel

i

x

x

x

[image: image8.wmf])

1

(

)

(

-

´

=

j

reg

pixel

j

y

y

y

3.3.2 Calibrating the Compass Sensor
The compass sensor is calibrated to match the coordinate system of the robot to that of the test platform. The compass sensor uses a clockwise coordinate system, so every command and function call is modified to the standard counterclockwise system. Subtracting commands and function calls from 360 degrees ensure a proper reference frame exists when the robot information regarding the robot’s directional heading is requested and when the robot is given a rotational command.
[image: image9.png]
Figure 3.5: The robot’s compass sensor original coordinate system.
The robot’s frame of reference, based on its initial direction heading, needs to be calibrated to that of the test platform. To create the same frame of reference between the robot and the test platform, the robot is made to face world north upon start of the application. At that time, the compass’s directional heading is called and that value is added to 270 (since the robot’s coordinate system is clockwise).
[image: image10.png]
Figure 3.6: A sample calibration method. It returns the number of degrees that all robot sensor readings must be adjusted to have the same reference as the test platform.

That value, the calibration value, is subtracted from all directional heading calls. The directional heading is passed to the coordinate converter function and 270 degrees becomes 90 degrees, which turns it into the standard coordinate system.

[image: image11.emf]

Y

 X 0 deg

9

0

d

e

g

[image: image12.emf]

Y

 XRobot Pose

R

o

b

o

t

P

o

s

e

Figure 3.7: The robot’s frame of reference versus the world’s frame of reference.
3.3.3 User Prompts
User prompts gathers key input variables such as the region of the color standard and the target robot location. The color standard, or color swatch is the same color on the back of the robot, and is placed in a user-defined region so the VPS knows what color to look for. Region three was the designated color standard region.
[image: image13.png]
Figure 3.8: The webcam view of the robot world with the color standard placed in region three.
The user is asked to enter in a target region. That information is passed to a graphical user interface function, which creates a rough map sketch using JButtons, a type of GUI component. A yellow button delineates the starting location of the robot and a red button delineates the user-defined target location. The buttons changed color as the robot advances towards the target. In addition, a green button shows the current location of the robot and a blue button shows previous regions the robot has passed through.

[image: image14.png]
Figure 3.9: The graphical user interface displaying initial location in yellow and target location in red.
3.4 Input class

The input class determines the proper robot orientation and displacement to reach the target based on the current state of the system. Orientation and displacement are functions of the starting and ending region. Given an W(n,m) case and a starting region number designator for reg0 and ending region reg1, orientation is calculated by taking the inverse tangent of the required displacement in the x and y direction. If mod(a,b)=0 then b is returned instead of 0 in order to keep column integrity.

∆x = mod(reg1, n) - mod(reg0, n)

 ∆y=(reg1 – mod(reg1,n))/reg1 -(reg0 – mod(reg0,n))/reg0
[image: image15.png]
Figure 3.10: Finding displacement between regions 1 and 8 in a W(5,4) case.
Required orientation could be calculated through the relationship:

[image: image16.wmf])

(

tan

1

x

y

D

D

=

-

q

The positive x-axis is considered to be 0o and the y-axis 90o. Four distinct cases exist dependent on the direction the robot needs to go: (+∆x, +∆y), (+∆x,- ∆y), (-∆x,+ ∆y), and (-∆x,- ∆y). These four cases are taken into account in order to ensure that all angle measurements returned are [0,360].

Displacement between regions is set to a constant number of wheel rotations. The total displacement the robot has to travel however could be determined with the Pythagorean Theorem. The experimental constant c is found through calculating the ratio of the length world to the unit value calculations.

[image: image17.wmf]2

2

)

(

)

(

)

(

x

y

c

c

dis

D

+

D

=

3.5 input command

The input command methods send commands to the system based on perception of robot state. Methods in the input command class send commands after determining the region with the least color value difference from the color swatch, and using selective region searches for follow on tracking endeavors.
3.5.1 Color Discrepancy
In order to track robot location, color discrepancies of each region from that of the RGB value of the color swatch is examined and processed. Since the robot has the same color on its back, the lowest discrepancy region should theoretically be the location of the robot. Color discrepancy is found in a manner similar to calculating a correlation coefficient; the difference between the RGB value components of a region and the standard are squared divided by the maximum distance any value could assume away from each color component. A for loop in the application increments a loop control variable from 1…nm regions to find the region with the lowest statistic value out of all regions excluding the color standard region.

[image: image18.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

+

-

-

=

2

2

2

)

255

,

(

)

255

,

(

)

255

,

(

)

.(

)

(

)

,

(

b

g

r

T

mx

mx

mx

colorDis

m

m

m

m

l

m

l

m

l

Let μ be the column vector form of the RGB color value of the region standard and λ be the RGB color value of the region-in-question column vector. Let μr, μg, and μb be the first, second, and third elements of the vector μ (red, green, and blue color components respectively). Let the function mx(a,b) be defined by the max(| a - b |, a).
[image: image19.png]
Figure 3.11: The mx function provides a helper function to determine color discrepancy statistics.
To find the most probable location of the robot, the statistics from all the regions must be compared. A full iteration through all regions produces a sample of color discrepancy values with distributions [0,1]. Let
[image: image20.wmf]i

l

 be the RGB color value for region i.

[image: image21.wmf](

)

)

,

(

min

Re

1

m

l

i

nm

i

colorDis

gion

bestMatch

=

=

The equivalent of this function is the maximum of one minus the minimum of the color discrepancy statistics. It will be referred to as the compatibility value of a region.

[image: image22.wmf](

)

)

,

(

1

max

Re

1

m

l

i

nm

i

colorDis

gion

bestMatch

-

=

=

3.5.2 Selective Searches

In order to facilitate an efficient tracking system, only the adjacent regions and last known region of the probable location of the robot are searched. Case statements determine the size of the array needed to store the total number of adjacent regions to a region based on if it is a corner, an edge, or a center region. Overall, there are nine distinct cases. These nine are the region(s) occupying the bottom left corner, the bottom edge, the bottom right corner, the left edge, the right edge, the top left corner, the top edge, the top right corner, or the center of the world.

[image: image23.wmf]
Figure 3.12: Nine cases for adjacency.

Edges have five adjacent regions, corners have three adjacent regions, and centers have eight adjacent regions. In a W(n,m) case, corner regions are regions 1, n, nm-n+1, and nm. Edges are any regions not a corner region, mod(reg,n)=1 or 0, and any regions between 1..n, and nm-n+1..nm. Center regions are everything else. Determining the region number identifier of adjacent regions requires a series of modulo, addition, subtraction, and multiplications.

.[image: image24.png]
Figure 3.13: The case statements furnished for the nine cases.
3.6 Error handler methods
Two controls checks used to check and compensate for error are a user-defined threshold, and a region jumping handler that coupled Bayes theorem with dead reckoning estimates.
3.6.1 User-defined Threshold with Selective Searches

A user-defined threshold, χ, is designed to increase the accuracy of robot localization. If the minimum of the maximum compatibility statistic for an adjacent region search fails to return a statistic that meets the user-defined threshold, then all n by m regions are searched for the location of the robot. This facilitates algorithmic accuracy and efficiency. The implementation of a user-defined threshold is a vital component of the success of this algorithm, especially in the case of a larger number of regions. The results of the performance of the RSVFS with the user-defined threshold error handler can be found in the results section.
3.6.2 Handling the Phenomena of Region Jumping
Dead reckoning and Bayes Theorem are tools that are used to check VPS error. If the threshold value is not met, a search ensues of all n x m regions, and the region returned is far away from the last known location of the robot, this phenomena is will be known as region jumping. It is a design flaw in the VPS and the solution to this problem lies in the robot keeping track of its own position, coupled with probability weights assessing the likelihood of returning such a location.
Although the VPS can predict with fairly good accuracy the location of the robot, it frequently fails to pinpoint a correct location when the robot is straddling regions. For that reason, odometry, commonly known as dead reckoning, is used in order for the robot to have some sort of a reference. The integration of velocity, angular speed, or acceleration over a time interval can be used to determine displacement. If the speed of the robot is sampled in discrete time intervals, as the sampling rate of the speed increases, the calculation of displacement converges to the true mean displacement. The odometry equations predict changes to the initial pose, (x0,y0,θ0) of the robot for the Cartesian and polar coordinates.
 The variable t is time, the variable V(t) is a function of the velocity with respect to time, and the variable θ is the current directional heading of the robot. A function is called in order to set a constant velocity in the application, making V(t) relatively constant (with some random error). Estimates of the displacements in the x and y plane became some constant times t2. As an alternate displacement estimation technique, the built-in tachometers can be used to measure changes in displacement and the compass sensor used to measure changes in angular displacement of the robot.

[image: image25.wmf]dt

t

t

V

x

t

x

t

ò

+

=

0

0

)

(

cos

)

(

)

(

q

[image: image26.wmf]ò

+

=

t

dt

t

t

V

y

t

y

0

0

)

(

sin

)

(

)

(

q

[image: image27.wmf]ò

+

=

t

dt

t

t

0

0

)

(

)

(

w

q

q

Bayes theorem can be used to assign weights to the VPS’s most probable robot location result given the last known region location. Bayes theorem is a mathematical technique that can be used to derive prior state probabilities for predicting states for linear systems.
 The probability p that the system is in state, xt , at time t given the measurement data (VPS’s prediction of current robot state), zt , at time t is equal to following relationship:

[image: image28.wmf])

(

)

|

(

)

|

(

t

t

t

t

t

x

p

x

z

p

z

x

p

h

=

[image: image29.wmf])

'

(

)

'

|

(

)

(

)

|

(

t

t

t

t

t

t

x

p

x

z

p

x

p

x

z

p

+

=

h

Implementing Bayes theorem into this problem should be recursive in nature because it will be relying on continual VPS input to update some internal belief of state. The full update algorithm as depicted in Fig. 3.14, takes the belief of the prior state and the probability that the system is in a current state given the previous state data and the measurement data to form a new belief of state. The step that finds
[image: image30.wmf])

(

t

x

bel

 is known as the update step of the algorithm because the previous belief
[image: image31.wmf])

(

t

x

bel

 is directly incorporated into the new belief. The variable ut is control data and t-1 is the variable that denotes that data is from the immediately preceding state.

[image: image32.png]
Figure 3.14: Bayes filter algorithm that updates the belief of the robots state through incorporating in previous state data.
Bayes Filter relies on tractable approximations, which are subject to the programmer’s criteria for evaluating conditions in any type of modeled process.
 The system’s probability that the robot is in a given region is equal to its compatibility value. The
[image: image33.wmf])

,

|

(

1

-

t

t

t

x

x

p

m

, the x and y displacement between the previous robot regional state xt-1, and the belief of the current regional state xt are found through the following:

∆x = mod(xt, n) - mod(xt-1, n)

 ∆y=(xt – mod(xt,n))/ xt -(xt-1 – mod(xt-1,n))/ xt-1
The corresponding real world displacement is then found.
[image: image34.png]
Figure 3.15: The acceptance region for finding the probability that the robot is in the red dot state given it is in the yellow dot state. The acceptance region is highlighted in green and the rejection region is highlighted in red.

The probability can be calculated through the use of a statistical test, such as the Z-test. The test should be used to find the probability that the actual robot displacement fell within the acceptance region, which is the distance from start to end of the region within the robot’s line of heading. Experimental testing determined that the mean of actual minus expected distance when the robot was given a displacement command was 0 + .5 cm. These two statistics can be incorporated into the Z-test to find the probability the robot is in a predicted state. Probabilities that fail to meet the α = .05 level of significance should be rejected. This conditional probability value is calculated for all regions and multiplied by all compatibility values. The weight for the dead reckoning probability estimate should be between .65-.7 and the VPS weight between .3-.35. The new region returned should be the new belief of the robot’s state.
THIS PAGE INTENTIONALLY LEFT BLANK

4 Additional Efforts

This section contains material the project touched on, which can be further explored. In a real search environment there will be obstacles present. How the system handles these obstacles determines its level of robustness and performance.
4.1 occupancy grid techniques

An occupancy grid approach to mapping breaks the world into regions, marking them as either occupied or unoccupied. If even a small part of an object straddles regions, then both regions will be deemed occupied. Robot exploration can be used to find obstacles, or an observer can manually mark obstacles, or the VPS can hone in on specific obstacle colors and positions and use that to switch the occupancy bits (0 and 1) in an occupancy grid matrix. If the robot explores the world to find the obstacles, tools such as an ultrasonic sensor can be used.
[image: image35.png]
Figure 4.1: A sample occupancy grid, where regions marked in black are considered blocked.
4.1.1 Ultrasonic Sensor

The ultrasonic sensor is a tool that can be used to determine where obstacles exist. It emits a 30 degree sonic wave cone in order to determine an object’s distance. An experiment should be performed on the ultrasonic sensor in order to obtain a feel for its accuracy and precision. For the experiment, fix the sensor head in a certain position and marked distances away from the sensor head in the x and y Cartesian plane. Use the obstacles contained in the test platform for the ultrasonic sensor testing.

Testing was performed on the sensor. Although the ultrasonic sensor can measure objects at distances up to 255 centimeters,
 testing at such lengths was unnecessary because the world did not span that distance. The main focus of the experiment was object distances between 0-50 cm away from the sensor. Readings at angles greater than 20 degrees experienced a standard deviation of 10cm, with straight on measurements deviating on average of 3 + 1cm above the true distance. The threshold angle where 50% of the values returned 255cm (a failure to identify the object’s existence) and 50% returned the true reading was 25 + 10 degrees. The mean of the measurements as stated above was found to be on average 3 cm above the actual value with a standard deviation of 2 cm. When the robot faced a certain direction the actual distance the head of the ultrasonic head is was away from the region is 2 + 1 cm. In real distance, the actual span of a region is 15 x 12 cm based on an 8 by 8 square system.

The sensor readings, once an object was picked up on, are pretty regular, but if the object was even the slightest bit off, it could mean that the sensor would completely miss out on the measurement. For that reason, the robot should be made to sort of scan with slight directional rotations. The mode of the at least 10 stream of values should be used as the distance of the obstacle away from the robot.

4.2 Path determination: Applications in Graph Theory
Graph theory can be of great assistance to developing the navigational scheme for this system. Through modifications to the application and information supplied to the robot, the system can be modified into the requirements of a traveling salesman problem, shortest path problem, greedy approach to finding a destination, and simply traversing through a maze. All these still constitute a search and rescue mission problem however restrictions are introduced that makes the problem interesting.
To assist in the creation of a high level control scheme for robot maneuver, graph theory can be employed. A graph is a representation of n points or nodes called vertices, joined together by arcs called edges. If two vertices a and b are connected with edge e, it is said that the two vertices are adjacent and the edge that connects a to b is incident to e.
 In terms of a real representation, a node is similar to a region and an edge is the possible set of regions the robot can directly move to. An adjacency matrix is constructed based on the possible paths the robot can take out of each region. The robot can be constricted to purely horizontal and vertical moves to make the problem easier, in which case, all diagonal adjacent regions should be assigned a zero. In addition, movement to same current region was deemed impermissible and therefore an infeasible option. This system can be modeled through a very regular structured diagram representation as seen in Fig. 4.2. The degree of any node is two, three, or four, depending on whether it is located in the corner, middle, or found on the edge of the window.

[image: image36.png]
Figure 4.2: Graph representation of a 4 by 6 region space.

 Elementij of an adjacency matrix consists of the number of edges or paths from region i to region j also known as the degree of the vertex.
 Given the nature of the problem, there exists only one distinct path from any node i to j so all entries are either 0 or 1.

[image: image37.png]
Figure 4.1: The construction of the adjacency matrix in the command prompt.

5 Results
The performance of the system was tested in order to gain some measure of comparison for any future researchers that take on this topic. Sensor performance, VPS performance, and the efficiency of the algorithms presented in this project will be highlighted.
5.1 Sensor performance and results

The performance of the compass sensor was tested in order to determine its degree of accuracy and precision. Two experiments are performed. For experiment one the robot was turned off and on in the same position in order to determine if any discrepancies developed in compass readings every time the robot was reset. For the second experiment, the sensor readings of the robot in a static state are taken over a time interval in order to determine the degree of deviation that existed (a matter of precision) between equivalent measurements. There was no deviation recorded in both experiments.

5.2 vps performance results
The VPS’s performance was tested through running a series of experiments on color sample data, compatibility values. The effectiveness of the error checks was tested as well.
5.2.1 Color Sample Runs
Testing was performed on the RGB values returned in order to determine the degree to which repeated measurements on the same color differed over time. The results of three runs for detecting the color value of the region standard when the application was first initialized are shown below. It was determined that the stabilization of the color values occurred 4000 + 1000 milliseconds after the start of the application. A 5000 millisecond sleep thread was called before any color values are taken to ensure a clean sample was obtained.

[image: image38.emf]Vision Camera RGB Values over Time Interval (Run 1)

0

50

100

150

200

250

300

100400700

100040007000

1000013000160001900022000250002800031000340003700040000

Time (in milliseconds)

RGB value

R

G

B

[image: image39.emf]Vision Camera RGB Values over Time Interval (Run 2)

0

50

100

150

200

250

300

100400700

100040007000

1000013000160001900022000250002800031000340003700040000

Time (in milliseconds)

RGB value

R

G

B

[image: image40.emf]Vision Camera RGB Values over Time Interval (Run 3)

0

50

100

150

200

250

300

200500800

200050008000

11000140001700020000230002600029000320003500038000

Time (in milliseconds)

RGB value

R

G

B

Figure 5.1: Three runs depicting the erratic color values returned of the color standard as time progressed and a stabilization around 4000 milliseconds.
5.2.2 Statistical Performance

The mean and standard deviation of the compatibility values for 10 runs of 10 samples for a static robot contained in one region are (.93 + .01).

[image: image41.png]
Figure 5.2: Here the robot is shown contained in region 9 and the region standard in region 3 in a W(8,8).

The system’s response to the case when the robot is between two or more regions was tested. The robot was placed in regions 1 and 9 with a majority of the robot’s center of mass contained in region 1 as depicted in Fig. 5.3. The compatibility values are collected from ten samples in Table 5.1. It can be noted that although region 1 had the superior statistic region 9 was not far behind compared to the other ten random regions not affiliated with the robot.

Table 5.1: Mean compatibility values, where the last column indicates regions with no affiliation to the robot’s current state.
	Statistics
	Reg 1
	Reg 9
	Non-match

	
	0.923389
	0.849862
	0.710115315

	
	0.926061
	0.847718
	0.782365959

	
	0.926061
	0.847691
	0.709577222

	
	0.926339
	0.849862
	0.782075374

	
	0.926339
	0.847691
	0.709577221

	
	0.926339
	0.849862
	0.780099418

	
	0.926339
	0.847691
	0.709577222

	
	0.926339
	0.847691
	0.782075374

	
	0.923657
	0.847691
	0.70982

	
	0.923657
	0.849862
	0.7803823

	Mean
	0.925452
	0.848562
	0.745682888

	Stdev
	0.001307
	0.001119
	0.038461262

[image: image42.png]
Figure 5.3: The robot overlapping two regions.

If the robot is moved even further into region 9, although it seemed as if region 9 contained the majority of the bulk of the robot, region 1 still came out ahead. The results had to do with the fact that the light colored regions of the robot increased the color component values of the sample in region 9, while the black cords depressed region 1’s color value. The compatibility values retrieved are found in Table 5.2.

[image: image43.png]
Figure 5.4: The robot in between two regions. The result of the compatibility test is featured in Table 5.2.

Table 5.2: Compatibility values for the state depicted in Fig. 5.4.
	Statistics
	Reg 1
	Reg 9

	
	0.912532
	0.908766

	
	0.911553
	0.907205

	
	0.911553
	0.908049

	
	0.911553
	0.908766

	
	0.912532
	0.907205

	
	0.911553
	0.908766

	
	0.910034
	0.907205

	
	0.911553
	0.907205

	
	0.911553
	0.908766

	
	0.910034
	0.908049

	Mean
	0.911295
	0.908001

	Stdev
	0.000849
	0.000723

5.2.3 Performance of Error and Command Measures
In order to determine how the discrepancies in displacement commands varied through repeated rotations and movements the robot was given a set of waypoints to visit. The waypoints start and end in the same location, however the number of steps varies. Testing for systemic bias over a period of many commands for the robot to go between regions was the objective of this experiment. Distance was equal to a constant 7.0 cm for this experiment, therefore the waypoint (a,b) is equal to the degree of travel and the multiple of the constant distance to travel for that heading.
Table 5.3: Five different waypoints used for testing where (a,b) = (degree, distance).
	Waypoint\Steps
	1
	2
	3
	4
	5
	6
	7

	1
	(270,1)
	(90,0)
	
	
	
	
	

	2
	(0,1)
	(270,1)
	(180,1)
	(90,0)
	
	
	

	3
	(0,1)
	(270,2)
	(180,1)
	(90,1)
	
	
	

	4
	(0,2)
	(270,2)
	(90,1)
	(180,1)
	(90,0)
	
	

	5
	(0,1)
	(0,2)
	(270,1)
	(180,1)
	(270,1)
	(180,2)
	(90,1)

It was determined that on average per move the robot would loose 2 + 1 degrees of angle accuracy and the displacement distance lost was negligible in the scope of the problem. Therefore, there was a focus on maintaining directional accuracy through slight adjustments in robot heading before each move made.
5.3 effeciency of performance
The efficiency of the algorithms will be accessed in the following sections. The introduction of the error handler methods changed the efficiency of the application and will be addressed as well.
5.3.1 Efficiency Overview

The time complexity for the initialization of the n by m regions is T(n)=Θ(nm). This notation simply means that for a given function g(n), we can denote by Θ(g(n)), exact order of g(n) as the set of functions whereby

Θ(g(n)) = { f(n) such that there exist positive constants c1, c2, and n0 such that 0 < c1 g(n) < f(n) < c2 g(n) for all n > n0}.

and O(g(n)), big O of g(n) as:

O(g(n)) = { f(n) such that there exist positive constants c and n0 such that 0 < f(n) < c g(n) for all n > n0}.

Big O and exact order notation is a way a computer scientist can describe the running time of an algorithm compared to the number of elements n to process. Exponential time for an algorithm is undesirable because as the number of operations grows, the time for the computer to perform these operations is some constant to the power of n times greater for each additional operation. The notation O(g(n)) describes a function that provides an upper bound for the time complexity of an algorithm, however, as the definition suggests the function Θ(g(n)) requires a stronger proof because g(n) must provide an upper and lower bound to the function with only a change to the multiple of the function.

[image: image44.png]
Figure 5.5: The linear function O(n) provides an upper bound for the log function (log n + k = O(n)) because there exist some value for n0 (n0 =1) and c (c=5) that makes the relationship true for all n > n0.

[image: image45.png]
Figure 5.6: An exact order relationship. This relationship requires a stronger proof since the function g(n) must provide a lower and upper bound for T(n) for all n > n0.

If we can prove an exact order relationship, Θ(g(n)), we can prove an O(n) relationship for the time complexity of an algorithm. For exact order, there exist some constant c1 and c2 that when multiplied by g(n) will asymptotically bound the function f(n), which describes the efficiency of the algorithm based on the number of elements n called into the method. Since assignment statements have no bearing on the number of items being called in by a method they are considered to be O(1) or Θ(1). It takes some constant c times 1 in order to assign a region to a number. However, being that there are two for loops, one between 1..n, the number of rectangular region columns and 1..m, the number of rectangular region rows, the cost of operations becomes O(nm).
 Equation 16 is the derivation of the time complexity.

[image: image46.wmf])

(

)

(

)

1

(

1

1

1

nm

n

m

i

m

i

n

j

Q

=

Q

=

Q

å

å

å

=

=

=

5.3.2 Efficiency of Key Algorithms
The probability P of rejecting a certain user defined threshold χ given the mean, c, and standard deviation, σc, of the color compatibility value was assumed to be approximately normally distributed ~N(c-χ, σ) and can be found through performing the Z test and finding the corresponding p-value from solving the integral as shown below. As stated, if maximum compatibility value did not exceed a set user defined threshold, then the confidence in the region match was rejected and the VPS would search or roam through all n by m cases of the regions.

[image: image47.wmf]ò

¥

-

-

-

=

£

=

£

-

=

0

)

(

2

1

2

)

0

(

)

0

(

)

|

(

2

2

c

p

s

s

c

c

s

c

d

e

Z

P

c

P

c

rej

P

c

c

c

c

Next, the efficiency of three key algorithms presented will be examined. They are the original search of the regions without selective searching, then with selective searching, then with a user defined threshold, then after the implementation of the controls for region jumping.

Given the probability of rejecting the user defined threshold, the new revised expected value of the efficiency of the find region search algorithm is equal to:

Efficiency(r) = O(nm)(r) + O(a) (1-r), where a = maximum number of adjacent regions and r = p(rejχ | c)
Although this algorithm is technically still O(nm) since O(a) is upper bounded by O(nm) given that nm>8, which is the maximum number of adjacent regions any region can have in this case, it is reduced by a significant factor based on the threshold chosen. The 95% confidence interval determined for the user defined threshold value, or the interval value that will not surpass the compatibility value in 95% of the cases was calculated to be (.8,.87). The lower interval estimate was derived from the compatibility rating of the regions where the robot was not located in. The success rate of the VPS system in locating one of the regions the robot was located in was 100% when used with the color red.

6 Conclusions and Future Research
This project involved the integration of several mathematical methods and techniques such as SLAM, error analysis, odometry, and Bayes Theorem. The VPS performed error analysis on color values detected as a localization technique to find the robot and return the estimated location to the application. The application then updated the map and redirected the path of the robot. This system still needs to be improved for implementation into military warfare technology, but the idea behind the RSVFS is to have a GPS become the driving mechanism behind it. Future researchers who delve into this project can examine topics such as the full implementation of the Kalman Filter and add dynamic programming problems to the experiment. Researchers can also possibly look into the mapping part of the SLAM problem and couple the results with this project.
THIS PAGE INTENTIONALLY LEFT BLANK

Appendix A

This is the main java class called tester.java:

//NAME: TESTER

//CREATED BY: CDT SIERRA OKOLO

//CREATED ON: 5 January 2008

//PURPOSE: This program drives an NXT LEGO Robot to a Region

//based on input from a VPS that senses color and determines

//the region with the greatest compatibility.

import icommand.navigation.*;

import icommand.nxt.*;

import icommand.nxt.comm.NXTCommand;

import icommand.vision.*;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.awt.*;

import java.io.IOException;

//java/project file

//window is 320x240

public class tester implements ColorListener{

//of activating the color listener - will not actually use this color

Vision visa = new Vision("Toodle's World");

final static int REGIONTODRIVETO=44;

final static int WIDTH = 320; //WIDTHxHEIGHT = Dimensions of the window

final static int HEIGHT = 240;

final static int NUMRECX=8;

final static int NUMRECY=8;

final static double THRESH=.86;

final static int LASTREG=NUMRECX*NUMRECY;

final static int COLOR= 0xa0b0c0;//must enter in a generic color for the sake

final static int RS=3; //The region where the color standard will be

int [] stanRGB = new int[3];

/**

 * @param args

 */

public static void main(String[] args) throws Exception, OutOfRangeException {

tester a = new tester();

a.exec();

}

public void exec()throws OutOfRangeException{

BotControl bot = new BotControl();

String getStart = "Enter in the starting region number: ";

String getTar = "Enter in the destination of the robot: ";

String getRS = "Enter in the region where the region standard is located: ";

int startReg=getPrompt(getStart,LASTREG);

int targReg=getPrompt(getTar,LASTREG);

int RSReg=getPrompt(getRS, LASTREG);

bot.setStartReg(startReg);

deadReck b = new deadReck(1,targReg);

bot.setTargetReg(targReg);

try{

Thread.currentThread().sleep(8000);

}

catch (Exception exception){}

run();

b.start();

int reg;

reg=checkThresh(1,.83,"");

System.out.println("The robot is in REG: "+reg);

int last=1;

int abc=1;

int count=1;

while (reg!=targReg){

b.goFor(9.0);

last=reg;

reg=checkThresh(abc,THRESH,"");

bot.robotInRegion(last, reg);

abc=reg;

if (count == 6){

b.changeCurTar(abc, targReg);

b.rotateToTargetReg(abc,targReg);

count=1;

}

count++;

if(reg<=LASTREG && reg>=LASTREG-NUMRECX+1)

System.exit(0);

}

System.out.println("ROBOT HAS REACHED TARGET!!");

try{

Thread.currentThread().sleep(3000);

}

catch (Exception exception){}

b.end();

System.exit(0);

}

//prompts the user for key integer variables

public int getPrompt(String a, int maxOfType) throws OutOfRangeException{

OutOfRangeException problem = new OutOfRangeException("This is out of range");

boolean bool=true;

boolean onceThrough=false;

System.out.print(a);

int userDefRS=0;

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

while (bool){

try{

bool=false;

if(onceThrough){

System.out.print(a);

}

userDefRS=Integer.parseInt(in.readLine());

onceThrough=true;

if (userDefRS < 1 || userDefRS > maxOfType){

throw problem;

}

}catch(OutOfRangeException ae){

onceThrough=true;

bool=true;

System.err.println("Error must be an integer between 1 and "+maxOfType);

}

catch(IOException ioe){

onceThrough=true;

bool=true;

System.err.println("Error must be an integer between 1 and "+maxOfType);

}

onceThrough=true;

}

return userDefRS;

}

//starts the program

public void run() {

this.init();

this.standard();

System.out.println("BT Opened");

try{

Thread.currentThread().sleep(100);

}

catch (Exception exception){}

}

//Returns the Region Dimensions

public int[] getDim () {

int[] dim = new int[2];

dim[0]=this.NUMRECX;

dim[1]=this.NUMRECY;

return dim;

}

//puts the value of the standard rgb value in the class variable stanRGB

public void standard(){

int red=0;

int green=0;

int blue=0;

int [] rgb = new int [3];

try{

Thread.currentThread().sleep(4500);

}

catch (Exception exception){}

while (blue==0 || green==0 || red==0){

try{Thread.currentThread().sleep(20);}

catch (Exception exception){}

blue=this.visa.getAvgBlue(RS);

red=this.visa.getAvgRed(RS);

green=this.visa.getAvgGreen(RS);

rgb[0]=red;

rgb[1]=green;

rgb[2]=blue;

}

this.stanRGB=rgb;

System.out.println("REGION STANDARD: " +RS+ " R: "+stanRGB[0]+" G: "+stanRGB[1]+" B: "+stanRGB[2]);

}

//inputs: the region number in question

//outputs: array of the all adjacent regions - the array size will

//vary based on the number of adjacent nodes

//purpose: this function assists the findregwcolor function by supplying it with an

//array of regions that are in the vicinity of the robots last

//known location

public int [] adjRegions (int curReg){

int [] cornerReg = new int [5];

int [] edgeReg = new int [7];

int [] centerReg = new int [10];

cornerReg[1]=curReg;

edgeReg[1]=curReg;

centerReg[1]=curReg;

int casea;

//establishes the 9 adjacency criteria - edges are different

if (curReg==1) //bottom left corner

casea=1;

else if(curReg==(NUMRECX*(NUMRECY-1)+1)) //top left corner

casea=2;

else if (curReg==(NUMRECX*NUMRECY)) //top right corner

casea=3;

else if (curReg == NUMRECX) //bottom right corner

casea=4;

else if (curReg%NUMRECX==1 && curReg!=1) //left edge excluding corners

casea=5;

else if (curReg>(NUMRECX*(NUMRECY-1)+1) && curReg < (NUMRECX*NUMRECY))//top edge

casea=6;

else if (curReg%NUMRECX ==0) //right edge

casea=7;

else if (curReg>1 && curReg<NUMRECX) //bottom edge excluding corners

casea=8;

else //center region

casea=9;

switch(casea){

case 1:

cornerReg[3]=2;

cornerReg[4]=NUMRECX+2;

cornerReg[2]=NUMRECX+1;

return cornerReg;

case 2:

cornerReg[3]=1+NUMRECX*(NUMRECY-2);

cornerReg[4]=2+NUMRECX*(NUMRECY-2);

cornerReg[2]=2+NUMRECX*(NUMRECY-1);

return cornerReg;

case 3:

cornerReg[3]=NUMRECX*NUMRECY-1;

cornerReg[4]=NUMRECX*(NUMRECY-1);

cornerReg[2]=NUMRECX*(NUMRECY-1)-1;

return cornerReg;

case 4:

cornerReg[3]=NUMRECX-1;

cornerReg[4]=2*NUMRECX;

cornerReg[2]=2*NUMRECX-1;

return cornerReg;

case 5:

edgeReg[5]=curReg-NUMRECX;

edgeReg[6]=curReg-NUMRECX+1;

edgeReg[2]=curReg+1;

edgeReg[3]=curReg+NUMRECX;

edgeReg[4]=curReg+NUMRECX+1;

return edgeReg;

case 6:

edgeReg[5]=curReg+1;

edgeReg[6]=curReg-1;

edgeReg[2]=curReg-NUMRECX;

edgeReg[3]=curReg-NUMRECX-1;

edgeReg[4]=curReg-NUMRECX+1;

return edgeReg;

case 7:

edgeReg[5]=curReg-NUMRECX;

edgeReg[6]=curReg-NUMRECX-1;

edgeReg[2]=curReg-1;

edgeReg[3]=curReg+NUMRECX;

edgeReg[4]=curReg+NUMRECX-1;

return edgeReg;

case 8:

edgeReg[5]=curReg+NUMRECX-1;

edgeReg[6]=curReg+NUMRECX+1;

edgeReg[2]=curReg+1;

edgeReg[3]=curReg+NUMRECX;

edgeReg[4]=curReg-1;

return edgeReg;

case 9:

centerReg[8]=curReg+1;

centerReg[9]=curReg-1;

centerReg[2]=curReg+NUMRECX;

centerReg[3]=curReg+NUMRECX+1;

centerReg[4]=curReg+NUMRECX-1;

centerReg[5]=curReg-NUMRECX;

centerReg[6]=curReg-NUMRECX-1;

centerReg[7]=curReg-NUMRECX+1;

return centerReg;

}

return centerReg;

}

//input: none

//output: none

//purpose: initialize the vision window for the camera with the regions

public void init() {

for (int j=1; j<(NUMRECY+1); j++){

for (int i=1; i<(NUMRECX+1); i++){

System.out.println("Region " + (i+(j-1)*(NUMRECX)) + " has been created.");

this.visa.addRectRegion(i+(j-1)*(NUMRECX), (WIDTH/(NUMRECX))*(i-1), (HEIGHT/(NUMRECY))*(j-1), (WIDTH/(NUMRECX)),(HEIGHT/(NUMRECY)));

visa.addColorListener(i+(j-1)*(NUMRECX),this,COLOR);

}

}

visa.setImageSize(WIDTH,HEIGHT);

visa.startViewer("Toodle's world");

}

//input: current region (int) and useDef (boolean)

//output: array of type double

//purpose: this function will return the value of the region against a certain color value

// this test value can be put in any region then use regExclude to enter the region

// where this test site is the function will not return this region being the perfect

// match. script is a check and tells the user what this region means

//if the boolean is true then the function will "roam"

public double [] findRegionWColor (int currentReg, boolean useDef) {

int [] adjReg=this.adjRegions(currentReg);

int [] rgb = new int[3];

rgb[0]=0;rgb[1]=0;rgb[2]=0;

double [] regionwCorV = new double[2]; //{bestMatchingReg,Error}

int j = adjReg.length;

regionwCorV[0]=1.0;

regionwCorV[1]=0.0;

int [] defaultAll = new int[NUMRECX*NUMRECY+1];

double totalfind=0;

for (int k=1; k<NUMRECX*NUMRECY+1; k++){

defaultAll[k]=k;

}

if(useDef==true){

j=defaultAll.length;

adjReg=defaultAll;

}

try{

Thread.currentThread().sleep(1000);

}

catch (Exception exception){}

for (int i=1; i<j; i++) {

while (rgb[0]==0 || rgb[1]==0 || rgb[2]==0) {

try{

Thread.currentThread().sleep(100);

}

catch (Exception exception){}

System.out.println("I is : " + adjReg[i]);

rgb[0]=this.visa.getAvgRed(adjReg[i]);

rgb[1]=this.visa.getAvgBlue(adjReg[i]);

rgb[2]=this.visa.getAvgGreen(adjReg[i]);

}

double total = perDis(stanRGB,rgb);

System.out.println("Region " + adjReg[i] + " R: " + rgb[0] + " G: " + rgb[1] + " B: " + rgb[2] + " total: " + total);

if (adjReg[i] != RS) {

if (total > totalfind) {

regionwCorV[0]=(double)adjReg[i];

totalfind=total;

}

}

rgb[0]=0;

rgb[1]=0;

rgb[2]=0;

useDef=false;

}

regionwCorV[1]=totalfind;

return regionwCorV;

}

//assert thresh falls between 0 and 100

//this function returns the value of the closest matching region w the

//color standard set in region RS

//returns the closest matching region to the standard aka the robot location

public int checkThresh (int lastKnownReg, double thresh, String script){

double [] colorStand;

double threshPer = thresh;

colorStand=findRegionWColor(lastKnownReg, false);

if (colorStand[1] < threshPer){

colorStand=findRegionWColor(lastKnownReg, true);

}

System.out.println(script + colorStand[0]);

return (int)colorStand[0];

}

//input: array of mean values and the ...

//function returns the percent discrepancy from the standard value

//used to determine the goodness of fit/correlation between a regions

//color value and a mean (the color standard for tracking the robot)

//divide by three because the maximum value for the function is Sqrt[3]

//to obtain a value between 0 and 1. The closer this number is to 1 the better

public double perDis (int[] mean, int[] point){

double am=(double)mean[0];

double pm=(double)point[0];

double am2=(double)mean[1];

double pm2=(double)point[1];

double am3=(double)mean[2];

double pm3=(double)point[2];

double sqr, sqb, sqg;

double value;

if(point[0]>mean[0])

sqr= (pm-am)*(pm-am);

else

sqr= (-pm+am)*(-pm+am);

if(point[1]>mean[1])

sqg= (pm2-am2)*(pm2-am2);

else

sqg= (-pm2+am2)*(-pm2+am2);

if(point[2]>mean[2])

sqb= (pm3-am3)*(pm3-am3);

else

sqb= (-pm3+am3)*(-pm3+am3);

System.out.println("Sqr: "+sqr+" Sqb: "+sqb+" Sqg: " + sqr);

double total= ((double)(Math.sqrt(sqr+sqb+sqg)))/(Math.sqrt(maxD(am,255.0)*maxD(am,255.0)+maxD(am2,255.0)*maxD(am2,255.0)+maxD(am3,255.0)*maxD(am3,255.0)));

value = 1-total;

return value;

}

//input: double mu

public double maxD (double mu, double max){

if(mu < max/2.0)

return max-mu;

else

return mu;

}

public void colorDetected(int region, int color) {

}

}

Appendix B

This is the GUI class that displays the rough map:

import icommand.vision.*;

import icommand.nxt.*;

import icommand.navigation.*;

import icommand.nxt.comm.*;

import java.awt.event.*;

import java.awt.*;

import javax.swing.*;

public class BotControl {

//see page 360

JButton[][] button;

BotControl()

{

tester ab= new tester();

int x=ab.NUMRECX;

int y=ab.NUMRECY;

JFrame frame = new JFrame("Robo Status");

frame.setLayout(new FlowLayout());

frame.setSize(900, 620);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel panel1 = new JPanel();

panel1.setPreferredSize(new Dimension(450, 450));

panel1.setOpaque(true);

panel1.setBorder(BorderFactory.createLineBorder(Color.BLUE));

panel1.setLayout(new GridLayout(9, 13));

int l=1;

JButton[][] buttons = new JButton[x+1][y+1];

int mul;

for (int i = 1; i <= x; i++)

{

for (int j = 1; j <= y; j++)

{

mul=j+(i-1)*x;

buttons[i][j] = new JButton("R"+mul);

l++;

}

}

for (int i = 1; i <= x; i++)

{

for (int j = 1; j <= y; j++)

{

mul=j+(i-1)*x;

panel1.add(buttons[(x+1)-i][j]);

}

}

this.button=buttons;

JPanel panel2 = new JPanel();

panel2.setPreferredSize(new Dimension(200, 450));

panel2.setOpaque(true);

panel2.setBorder(BorderFactory.createLineBorder(Color.RED));

frame.add(panel1);

frame.add(panel2);

frame.setVisible(true);

}

public void start(){

SwingUtilities.invokeLater(new Runnable()

{

public void run()

{

new BotControl();

}

});

}

public int mod (int a, int b){

if (a%b != 0)

return a%b;

else

return b;

}

public void changeColor(int reg, Color bg){

tester a = new tester();

int x=a.NUMRECX;

int y=a.NUMRECY;

int xreg;

int yreg;

xreg= mod(reg,x);

yreg= ((reg - mod(reg,x))/x)+1;

button[yreg][xreg].setBackground(bg);

}

public void robotInRegion (int prevReg, int curReg){

changeColor(curReg,Color.GREEN);

changeColor(prevReg,Color.CYAN);

}

public void setTargetReg (int r) {

changeColor(r, Color.RED);

}

public void setStartReg(int reg){

changeColor(reg, Color.YELLOW);

}

}

Appendix C

This is the class that performs odometry to calculate the correct robot heading and displacement:

import icommand.navigation.*;

import icommand.nxt.*;

import icommand.nxt.comm.NXTCommand;

import icommand.vision.*;

import java.awt.*;

public class deadReck {

UltrasonicSensor us;

CompassSensor north;

double [] pose = new double [3]; // current {xpos,ypos,direction}

int targReg;

int curReg;

double calDeg;

Pilot kicker = new Pilot(4.0F, 13.5F, Motor.B, Motor.C,true);

public int mod (int a, int b){

if (a%b==0)

return b;

else

return a%b;

}

public void goFor (double a){

this.kicker.travel(a);

}

public deadReck(int cur, int tar){

this.targReg=tar;

this.curReg=cur;

}

public void changeCurTar(int cur, int tar){

this.targReg=tar;

this.curReg=cur;

}

public void start(){

NXTCommand.open();

init();//may want to switch to

kicker.setSpeed(400);

try{Thread.currentThread().sleep(100);}

catch (Exception exception){}

calibration();

System.out.println("The robot is facing this degree: "+this.getDeg());

try{Thread.currentThread().sleep(200);}

catch (Exception exception){}

rotateToTargetReg(curReg, targReg);

}

public void end(){

NXTCommand.close();

}

private void init() {

this.us = new UltrasonicSensor(SensorPort.S3);

this.north = new CompassSensor(SensorPort.S2);

}

public void calibration(){

double deg;

deg=north.getDegrees();

this.calDeg=270.0-deg;

}

private double getDeg (){

double angle;

angle=north.getDegrees();

angle=(angle+this.calDeg);

if (angle < 0)

return (double)(360-(int)Math.abs(angle));

else

return angle%360.0;

}

//These next three method update the pose of the robot from the current

//boolean dummy distinguishes it from the next method

// this function returns the value that the robot rotated to

public double rotateToTargetDeg(double tar, double tolerableBy) {

double deg;

boolean dir=false;

double target=tar;

deg=getDeg();

System.out.println("Robot is facing: " + deg);

System.out.println("Target degree is : " + target);

if (Math.abs(360-(int)deg+(int)target) < Math.abs((int)deg-(int)target)){

dir=true;

}

int b;

if (dir){

b=Math.abs(360-(int)deg+(int)target);

kicker.rotate(b);

deg=getDeg();

b=Math.abs(360-(int)deg+(int)target);

System.out.println("the degrees1 to rotate: " + b);

}else{

b=(int)deg-(int)target;

kicker.rotate(b);

deg=getDeg();

b=(int)deg-(int)target;

System.out.println("the degrees to rotate: " + b);

}

System.out.println("the degrees to rotate: " + "deg: "+deg+"tar: "+tar +"b is: "+ b);

//
while (Math.abs(b)>tolerableBy){

//

if (dir){

//

kicker.rotate(3);

//

//

}else{

//

kicker.rotate(-3);

//

}

//

//

if (dir){

//

//

deg=getDeg();

//

b=Math.abs(360-(int)deg+(int)target);

//

System.out.println("the degrees1 to rotate: " + b);

//

}else{

//

//

deg=getDeg();

//

b=Math.abs((int)deg-(int)target);

//

System.out.println("the degrees to rotate: " + b);

//

}

//

}

System.out.println("The robot is currently facing " + deg + " degrees");

return deg;

}

public void rotateToTargetReg(int currentReg, int targetReg){

double angle;

angle=this.angleBtwReg (curReg, targReg);

System.out.println("the right angle should be 45. THe number : " + angle + " appears");

rotateToTargetDeg(angle,10);

}

public void updatePose(double dx, double dy, double dtheta){

this.pose[0]=pose[0]+dx;

this.pose[1]=pose[1]+dy;

this.pose[2]=pose[2]+dtheta;

}

//this one calculates theta for the user using the robots current reading for

//degrees

public void updatePose(double x, double y){

this.pose[0]=x;

this.pose[1]=y;

this.pose[2]=this.getDeg();

}

public void updatePose(double dx, double dy, boolean dummy){

this.pose[0]=pose[0]+dx;

this.pose[1]=pose[1]+dy;

this.pose[2]=this.getDeg();

}

//Method calculates the grid based coordinate system angle between region

//start and region end

//Input: starting region, ending region, then the number of regions

//in the x direction and y direction

public double angleBtwReg (int start, int end) {

tester ab = new tester();

double dx;

double dy;

double dummy=0.0;

dx=(mod(end,ab.getDim()[0]))-(mod(start,ab.getDim()[0]));

dy= ((end - mod(end,ab.getDim()[0]))/ab.getDim()[0]) - ((start - mod(start,ab.getDim()[0]))/ab.getDim()[0]);

if (dx>=0 && dy>=0)

return 360.0-(double)Math.abs(Math.toDegrees(Math.atan((double)dy/(double)dx)));

if (dx>=0 && dy<=0)

return 360.0-(double)360.0-Math.abs(Math.toDegrees(Math.atan((double)dy/(double)dx)));

if (dx<=0 && dy>=0)

return 360.0-(double)180.0-Math.abs(Math.toDegrees(Math.atan((double)dy/(double)dx)));

if (dx<=0 && dy<=0)

return 360.0-(double)180.0+Math.abs(Math.toDegrees(Math.atan((double)dy/(double)dx)));

return dummy;

}

}

Appendix D

This is the processing class that calculates updates and prior state probabilities:

import java.util.*;

public class MatrixReg{

//probabilities

public double distConstant;

public static int tarReg;

public static int dimX;

public static int dimY;

regSquare[][] ab;

//public static void main(String[] args) throws Exception {

//
MatrixReg ab=new MatrixReg();

//
}

public int mod (int a, int b){

if (a%b==0)

return b;

else

return a%b;

}

public int max (int a, int b) {

if (a>=b)

return a;

return b;

}

//Takes the sum of all the distances away from the end point and finds the constant

//which you can divide all entries by in order to normalize the sum to 1

private double makedistConstant () {

tester ab = new tester();

int end=ab.REGIONTODRIVETO;

int x = dimX;

int y = dimY;

int xs;

int ys;

int dx;

int dy;

double t;

double total=0.0;

System.out.println("The target region is " + end);

for (int i=1; i<(x*y+1); i++){

dx=mod(end,x)-mod(i,x);

dy= ((end - mod(end,x))/x) - ((i - mod(i,x))/x);

xs=Math.abs(dx)*Math.abs(dx);

ys=Math.abs(dy)*Math.abs(dy);

t= Math.sqrt((double)(xs+ys));

if(t!=0)

t=1/t;

total=total+t;

}

this.distConstant=1/total;

return (1/total);

}

//Assert that the direction entered in are one of 5 - 90 0 270 360 180

//function supplied to MatrixReg will go into the individual

//regSquare and update probabilities based on the orientation

//of the robot and the measurement of the ultrasonicM

//this function determines which regions will be updated

//and the distance away the robot is from them

//and based on the ultraSonic measurement which regions

//need to be updated

public void updateProb(int curReg, int dir, int ultraM){

ArrayList() ab = new ArrayList <int> ();

boolean inXPlane=false;

int a;

if (dir==90 || dir==270)

inXPlane=false;

else

inXPlane=true;

if (inXPlane){

if (dir==180){

if(mod(curReg,dimX)!=1){

a=curReg;

while(mod(a,dimX)!=1){

a=curReg-1;

ab.insert(a);

}

if (mod(a,dimX)==1)

ab.insert(a);

}

}

if (dir==0){

if(mod(curReg,dimX)!=dimX){

a=curReg;

while(mod(a,dimX)!=dimX){

a=curReg+1;

ab.insert(a);

}

if (mod(a,dimX)==dimX)

ab.insert(a);

}

}

}

else{

if (dir==270){

a=curReg;

a=a+dimX;

while (a< dimX*dimY){

ab.insert(a);

a=a+dimX;

}

}

if (dir==90){

a=curReg;

a=a-dimX;

while (a>1){

ab.insert(a);

a=a-dimX;

}

}

}

//ab is an arraylist of regions affected

//take those regions - convert to i j format and find the

//find the distAway and the regions it affects based on this data

//also if the ultra measurement is less than distance of a regioin

//cannot use it

}

public MatrixReg(){

tester a = new tester();

dimX=a.getDim()[0];

dimY=a.getDim()[1];

tarReg=a.REGIONTODRIVETO;

regSquare[][] ab = new regSquare[dimX+1][dimY+1];

makedistConstant();

for (int i=1; i<dimX+1; i++){

for(int j=1; j<dimY+1; j++){

ab[i][j]= new regSquare(i,j);

}

}

}

//Single region square with the probability of an occupied or unoccpied space

public class regSquare{

private int reg;

private int i;//x

private int j;//y

private double probOcc;

private double distAway;

private boolean occupied=false;

private double [] probVector;

private int dimOfWeights;

public double [] distWeightVec; // { 1/2, 1/4, 1/8,...}

public void updateNewMeas (int disAway,boolean xPlane){

//make a call to this function;

//from disAway will decide which element in probVector needs

//to be updated (regions away)

//IF xPlane is true - find real length of Xplane

//divide xplane by number of regions in that

//vice versa if boolean xPlane is false

//solve for the distance the actual measurement is from the central

//axis of the region - so that the distance

//returned will be 0 if the measure is dead center of the region

//or - if before it and + if after that (maybe into another region)

//updateProb(int regionsAway, int distAway, boolean xPlane);

}

public regSquare(int i, int j) {

this.i=i;

this.j=j;

this.reg=this.i+(this.j-1)*dimX;

init();

getDistAway();

getWeightDim();

makeWeight();

probVector(dimOfWeights);

}

public void getWeightDim() {

//MAKE THE LENGTH OF THIS EQUAL TO THE LONGEST DISTANCE AWAY FROM THIS

//POINT ANY THING CAN ASSUME

int dx1;

int dx2;

int dy1;

int dy2;

int xmax;

int ymax;

int xymax;

dx1=mod(dimX*dimY,dimX)-mod(dimX*dimY,dimX);

dx2=mod(1,dimX)-mod(1,dimX);

xmax=max(dx1,dx2);

dy1= ((dimX*dimY - mod(dimX*dimY,dimX))/dimX)-((reg - mod(reg,dimX))/dimX);

dy2= ((dimX*dimY - mod(dimX*dimY,dimX))/dimX)-((reg - mod(reg,dimX))/dimX);

ymax=max(dy1,dy2);

xymax=max(xmax,ymax);

dimOfWeights=xymax;

}

public void makeWeight(){

distWeightVec= new double[dimOfWeights];

distWeightVec[1]=.5;

for (int i=2; i<dimOfWeights;i++){

distWeightVec[i]=distWeightVec[i-1]*(.5);

}

this.distWeightVec=distWeightVec;

}

//the arrays must have the same length.

public double dotProd (double[] a, double[] b) {

double partTotal;

double total=0.0;

for(int i=1; i<a.length; i++){

partTotal=a[i]*b[i];

total=partTotal+total;

}

return total;

}

public double[] dotProdVec (double[] a, double[] b) {

double[] vec = new double[a.length];

double partTotal;

for(int i=1; i<a.length; i++){

partTotal=a[i]*b[i];

vec[i]=partTotal;

}

return vec;

}

private double getDistAway(){

int end=tarReg;

int x = dimX;

int y = dimY;

int xs;

int ys;

int dx;

int dy;

double t;

int reg=this.i+(this.j-1)*x;

dx=mod(end,x)-mod(reg,x);

dy= ((end - mod(end,x))/x) - ((reg - mod(reg,x))/x);

xs=Math.abs(dx)*Math.abs(dx);

ys=Math.abs(dy)*Math.abs(dy);

t= Math.sqrt((double)(xs+ys));

if(t!=0)

t=distConstant/t;

this.distAway=t;

return t;

}

public class probVector {

double [] prob;

double [] numTimesTaken;

public probVector(int a) {

prob=new double[a];

numTimesTaken=new double[a];

}

//input regions away and actual cm distance away from region, and if it is in the xplane

public double updateProb(int regionsAway, int distAway, boolean xPlane) {

//do pii calculation

double probDetermined;

double newMean;

double asum;

double [] regUsed=new double [prob.length];

//SOLVE FOR PROBDETERMINED HERE BASED ON INPUTS

asum=(probDetermined+prob[regionsAway]*numTimesTaken[regionsAway]);

numTimesTaken[regionsAway]=numTimesTaken[regionsAway]+1;

newMean=asum/numTimesTaken[regionsAway];

prob[regionsAway]=newMean;

for (int i=1; i<prod.length; i++){

if(numTimesTaken[i]>=1)

regUsed[i]=1;

else

regUsed[i]=0;

}

return dotProd(distWeightVec,prob)/(dotProd(regUsed,distWeightVec));

}

}

}

LIST OF REFERENCES

Bagnall, Brian. Maximum Lego NXT: Building Robots with Java Brains. Manitoba: Variant Press.

Bekey, George A. Autonomous Robots: From Biological Inspiration to Implementation and Control. Cambridge: The MIT Press, 2005.

Burden, Richard L. and J. Douglas Faires. Numerical Analysis. Belmont: Thomson Brooks/Cole, 2005.

Cormen, Thomas H. Introduction to Algorithms. Cambridge: The MIT Press, 2007.

Fox, Dieter, Sebastian Thrun, and Wolfram Burgard. Probabilistic Robots. Cambridge: The MIT Press, 2005.

Ghosh, Bijoy K., Ning Xi, T.J. Tarn. Control in Robots and Automation: Sensor-Based Integration. London: Academic Press, 2005.

Jones, Joseph L. and Anita M. Flynn. Mobile Robots: Inspiration to Implementation. Massachusetts: A K Peters, Ltd., 1993.
Josephson, Edward H. and Raymond M. MacEdonia. Annals of the American Academy of Political and Social Science. Vol. 517, New Directions in US Defense Policy (Sep., 1991).

Keogh, James. Java Demystified. California: McGraw Hill: 2004.

Koffman, Elliot B. and Paul A. T. Wolfgang. Objects, Abstraction, Data Structures, and Design Using Java Version 5.0. Hoboken, NJ: John Wiley & Sons, 2005.

Leitmann, George. The Calculus of Variations and Optimal Control: An Introduction. New York: Plenum Press, 1981.

Mason, Matthew T. Mechanics of Robotic Manipulation. Cambridge: The MIT Press, 1998.

Murphy, Robin R. Introduction to AI Robotics. Cambridge: The MIT Press, 2000.

Murray, Richard M., Zexiang Li, S. Shankar Sastry. A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press, 1994.

Stewart, James. CalcLabs with Mathematica: Multivariable Calculus. Pacific Grove: Brook/Cole, 2003.

--------------. CalcLabs with Mathematica: Single Calculus. Pacific Grove: Brook/Cole, 2003.
Wilson, Robin and John Watkins. Graphs An Introductory Approach. Hoboken, NJ: John Wiley & Sons, 1989.

(15)

(14)

(6)

(5)

(13)

(4)

(3)

(12)

(11)

(10)

(18)

(17)

(9)

(8)

(7)

(2)

(1)

(16)

�Edward H. Josephson and Raymond M. MacEdonia, Annals of the American Academy of Political and Social Science, Vol. 517, New Directions in US Defense Policy (Sep., 1991), 176.

� Brian Bagnall, Maximum Lego NXT: Building Robots with Java Brains, Manitoba: Variant Press, 2007, 1.

� Bagnall, 5.

� Bagnall, 7-8.

� George A Bekey, Autonomous Robots: From Biological Inspiration to Implementation and Control, Cambridge: The MIT Press, 2005, 61.

� Ghosh, Control in Robots and Automation: Sensor-Based Integration, London: Academic, Press, 2005, 3-5.

� Bekey, 6.

� Bekey, 480-1.

� Dieter Fox, Probabilistic Robots, Cambridge: The MIT Press, 2005, 31.

� Bekey, 486.

� Ibid.

� Fox, 35.

� Bagnall, 23.

� Robin Wilson and John Watkins, Graphs An Introductory Approach, Hoboken, NJ: John Wiley & Sons, 1989, 32.

� Wilson, 11.

� Thomas H. Cormen, Introduction to Algorithms. Cambridge: The MIT Press, 2007, 42.

� Cormen, 44.

� Cormen, 76.

PAGE
10

_1272348222.unknown

_1272406028.vsd
+

Controller

Error

Controlled System (Plant)

Reference

-

Input command

Output

_1272433185.unknown

_1272921599.vsd
Main

User Defined Threshold

Reference

Error Processing

Position Tracking

Controller

VPS

User Interface

Input Command

Key variable Initialization

Region Jumping

Screen Shot

_1272423323.unknown

_1272432203.unknown

_1272348680.unknown

_1272368216.unknown

_1272385816.unknown

_1272362465.unknown

_1272348667.unknown

_1272348241.unknown

_1269165994.vsd
 Y

 X

Robot Pose

Robot Pose

_1272341988.unknown

_1272341998.unknown

_1271607436.unknown

_1272315458.vsd

_1269321412.unknown

_1259529487.unknown

_1259529782.unknown

_1269165926.vsd
 Y

 X

 0 deg

90 deg

_1259529542.unknown

_1259529403.unknown

