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Abstract

A broadcast cover is a integer valued function f on the vertices
of a graph such that every edge uw is distance at most f(v) from
some vertex v ∈ V . We can regard the vertices v with f(v) > 0 as
broadcast stations, each having a transmission power that might be
different from the powers of other stations. The optimal broadcast
cover problem seeks a broadcast cover that minimizes the sum of
the costs of the broadcasts assigned to the vertices of the graph.
We present a theorem about the nature of broadcast covers that
establishes a polynomial time algorithm for the problem on arbitrary
graphs. We also discuss the broadcast domination problem and some
interesting relationships between it and broadcast cover.

1 Introduction and motivation

A vertex cover S is a subset of the vertices in a graph such that every edge
in the graph has at least one endpoint in S. The topic has long been of
interest to researchers. The associated decision problem, vertex cover,
occupies a prominent place in the computational complexity literature [5].
This definition also leads naturally to the associated optimization problem
which is to find a vertex cover of minimum cardinality. Numerous variants
of this problem have been studied.

vertex cover is NP-complete on arbitrary graphs [5]. It is also NP-
complete on several classes of graphs, including cubic planar graphs and
triangle-free graphs. The problem can be solved in polynomial time on,
for example, bipartite graphs and chordal graphs [5], as well as recursively
constructed graphs such as trees and series-parallel graphs [2, 8].
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We start with notation and more formal problem definitions. All graphs
in this paper are simple and connected. Let G = (V, E) be a graph with
n = |V | and m = |E|. For any vertex v ∈ V , the neighborhood of v is the
set N(v) = {u | uv ∈ E} and the closed neighborhood is the set N [v] =
N(v) ∪ {v}. The edge neighborhood of v is the set Ne(v) = {uv | u ∈ V }.
Similarly, for any set S ⊆ V , N(S) = ∪v∈SN(v)−S and N [S] = N(S)∪S.
For any set S ⊆ V , Ne(S) = ∪v∈SNe(v). A set S is a dominating set if
N [S] = V . The minimum cardinality of a dominating set of G is denoted by
γ(G). A set S is a vertex cover if Ne(S) = E. The minimum cardinality of
a vertex cover of G is denoted by β(G). The distance, d(u, v), between two
vertices u and v in G is the number of edges on a shortest path between u
and v in G. The eccentricity, e(v), of a vertex v is the largest distance from
v to any vertex of G. The radius of G, rad(G), is the smallest eccentricity
in G. The diameter of G, diam(G), is the largest eccentricity in G.

In [4], Erwin introduced a variant of the dominating set problem known
as broadcast domination. In this version, the vertices in S (known as dom-
inators) each have an associated positive integer that can be thought of
as its broadcast range. Then vertices not in S are dominated if they are
within the broadcast range of some dominator. More formally, a dominat-
ing broadcast is an integer valued function f on the vertices such that every
vertex of the graph is distance at most f(v) from some vertex v that has
f(v) > 0. A dominating broadcast is optimal if it minimizes the sum of
the costs of the dominators across all vertices in the graph. These costs are
typically taken to be the f(v) values. Some related problems are discussed
in [3].

In this paper, we introduce the broadcast cover problem. Loosely speak-
ing, broadcast cover is to vertex cover what broadcast domination is to
dominating set. As with broadcast domination, the vertices in S (known
as covering vertices) provide coverage to the edges of the graph. A formal
definition appears in Section 4.

This paper is organized in the following way. The next section formalizes
the notion of broadcasts in graphs, providing background material common
to both broadcast domination and broadcast cover. Following, we provide a
brief summary of results for the broadcast domination problem. In Section
4, we formally define the broadcast cover problem and provide some new
results. Section 5 contains a comparison of the two problems and some
concluding remarks.
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2 Broadcasts in Graphs

Given a graph G = (V, E), a broadcast is a function f : V → {0, 1, 2, ...}.
The cost of a broadcast f incurred by a set S ⊆ V is f(S) =

∑
v∈S f(v).

Thus, f(V ) is the total cost incurred by the broadcast function f . More
informally, we say that vertex v has an originating broadcast of power f(v)
if f(v) > 0. If f(v) = 0 we say v has no originating broadcast. If f(v) > 0
and d(u, v) < f(v), we say the broadcast originating from vertex v reaches
vertex u with power f(v)− d(u, v).

A broadcast is dominating if for every vertex u ∈ V , there is a vertex v
with f(v) > 0 and d(u, v) ≤ f(v). A dominating broadcast f is optimal if
f(V ) is minimum over all choices of broadcast dominating functions for G.
An optimal broadcast dominating function satisfies f(V ) ≤ rad(G), since
if v is a vertex of minimum eccentricity (i.e. a center of the graph), the
broadcast function defined by f(v) ← rad(G) and f(u) ← 0 for all u 6= v
is dominating. We denote the cost of an optimal broadcast dominating
function as γb(G). We will call any broadcast dominating function with
only one non-zero f(v) value a γb-radial broadcast, and we call a graph
γb-radial if some γb-radial broadcast is optimal.

A broadcast is covering if for every edge uv ∈ E, there is a path in
G that satisfies two properties. First, the path must include the edge uv.
Second, one end of the path must be a vertex w with f(w) at least the
length of the path. This second condition could be restated to say there
must exist a w ∈ V with f(w) ≥ max{d(w, v), d(w, u)} where the distances
are measured in the specified path. Informally this means that every edge
uv in the graph is within distance f(w) from some vertex w, where the
distance from uv to w is defined as the number of vertices between uv and
w inclusive of w and one of {u, v}. A covering broadcast f is optimal if
f(V ) is minimum over all choices of broadcast covering functions for G.
We denote the cost of an optimal broadcast covering function as βb(G).
We will call any broadcast covering function with only one non-zero f(v)
value an βb-radial broadcast, and we call a graph βb-radial if some βb-radial
broadcast is optimal.

3 Broadcast Domination

Since its introduction by Erwin [4], the broadcast domination problem has
been studied by several authors. If the problem is modified to include a
fixed maximum allowable broadcast power as a part of the instance it is
easy to see, by setting that value to 1, that the resulting problem is NP-hard
since it reduces to dominating set. The broadcast domination problem
is solvable in polynomial time on paths, cycles, complete graphs, and grid
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graphs [3]. Polynomial time algorithms for the problem on interval graphs,
series-parallel graphs, and trees are given in [1]. The algorithms for trees
and series-parallel graphs rely on theory concerning recursive graph algo-
rithms developed in [8] and [2]. These algorithms solve instances of the
variant with a fixed maximum allowable broadcast power as well as the
general case. In [7], the authors formulate the problem as an integer pro-
gram and report on computational results. Quite recently, Heggerness and
Lokshtanov [6] have established that broadcast domination (with no fixed
maximum broadcast power) can be solved in polynomial time on arbitrary
graphs.

A dominating broadcast is efficient if for every v ∈ V , there is exactly
one u ∈ V satisfying d(u, v) ≤ f(u). In [3], the authors prove that every
graph has an efficient broadcast f satisfying f(V ) = γb(G). The proof of
this theorem is constructive in the sense that it shows how any broadcast
can be transformed into an efficient broadcast with the same total cost.
This result turns out to be essential to our results in the next section.

Recall the concept of γb-radial broadcasts and γb-radial graphs from the
previous section. By considering a simple path on 6 vertices v1, v2, ..., v6

we can observe that not all graphs are γb-radial. The minimum γb-radial
broadcast has f(V ) = 3, but the broadcast f ′ with f ′(v2) = f ′(v5) = 1
achieves f ′(V ) = 2. Now we turn our attention to the analogous question
for broadcast cover. That is, are all connected graphs βb-radial? The an-
swer, somewhat surprisingly, turns out to be yes.

4 Broadcast Cover

The main result of this section is a proof that all connected graphs are
βb-radial. We start with some simple lemmas.

Lemma 4.1 Every optimal broadcast covering function satisfies f(V ) ≤
rad(G) + 1.

Proof. Consider a center vertex v and define the broadcast function
f(v) ← rad(G) and f(u) ← 0 for all u 6= v. Either f is covering or it
is not. If it is, f(V ) ≤ rad(G) and we are done. If f is not covering,
observe that f nevertheless reaches every vertex of G (i.e., f is broadcast
dominating). Only edges with both endpoints at distance rad(G) from v
are not covered. Modify f by increasing f(v) by 1 and the result is broad-
cast covering for G.
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Lemma 4.2 If G is βb-radial, then βb(G) is either rad(G) or rad(G) + 1.

Proof. By the previous lemma, βb(G) ≤ rad(G)+1 holds for all graphs. If
G is βb-radial, then there must exist an optimal broadcast covering function
f with only one non-zero f(v) value. But that value must be at least rad(G)
or it cannot cover every edge in G.

Both possible βb(G) values can be realized by βb-radial graphs. For
example, if G is a star graph, assigning f(v)← rad(G) to the center vertex
v is enough to cover the graph. But for the wheel graph f(v)← rad(G)+1
is required.

4.1 Finding Optimal Broadcast Covering Functions

Now we consider the issue of finding optimal broadcast covering functions.
We begin with a definition.

Definition 4.3 Given a graph G and a broadcast covering function f , a
dominated path is a path u0, u1, ..., uj in G with f(u0) > 0, f(uj) > 0,
and some ui, 0 ≤ i ≤ j satisfying d(u0, ui) ≤ f(u0) and d(ui, uj) ≤ f(uj),
where the distances are measured in the specified path.

Lemma 4.4 If f is broadcast covering for G and f is not βb-radial, then
a dominated path exists in G.

Proof. Consider a broadcast covering function f that is not radial. Accord-
ingly, there must exist distinct vertices u and v with f(u) > 0 and f(v) > 0.
Since G is connected, consider a shortest uv path. If d(u, v) ≤ f(u) + f(v)
then this path is a dominated path. Otherwise d(u, v) > f(u) + f(v).
Consider the vertices ui and ui+1 on the path with d(u, ui) = f(u) and
d(u, ui+1) = f(u) + 1. The edge uiui+1 is not covered by broadcasts origi-
nating from u or v, but since f is broadcast covering there must be some w
distinct from u with d(ui, w) ≤ f(w) and d(ui+1, w) ≤ f(w). The original
path from u to ui, together with a shortest path from ui to w is then a
dominated path.

Now we establish the main result of this section which is that broadcasts
that are not βb-radial can be transformed into βb-radial broadcasts essen-
tially by repeatedly combining originating broadcasts until only one re-
mains.

Theorem 4.5 Every graph G is βb-radial.

Proof. Consider an optimal broadcast covering function f . If f is not
radial, let u0 and uj be the endpoints of a dominated path in G with respect
to f . Then we create a new function f∗ as follows. f∗(uf(uj)) ← f(u0) +
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f(uj), f∗(u0) ← 0, f∗(uj) ← 0, and f∗(v) ← f(v) for v /∈ {uf(uj), u0, uj}.
The new function f∗ is broadcast covering since the broadcast originating
at uf(uj) reaches u0 with power f(u0) and uj with power f(uj). The new
function f∗ satisfies f∗(V ) = f(V ) = βb(G) by construction. Now set
f(v)← f∗(v) and repeat the procedure until no path of the specified type
exists. Then by Lemma 4.4 the result must be βb-radial.

Thus any optimal broadcast can be transformed into an optimal βb-radial
broadcast by the procedure outlined in the proof above. Note that the
optimality condition is not necessary; any covering broadcast that is not
βb-radial can be transformed into a βb-radial broadcast of the same total
cost.

This result leads immediately to a polynomial time algorithm for com-
puting βb(G) for any graph. Since every graph admits a radial broadcast
that is optimal, one can simply consider each vertex in turn as a candidate
for the originating broadcast. At each vertex v, it must also be determined
if assigning f(v)← e(v) covers the graph, or if e(v) + 1 is required instead,
but this computation is straightforward and efficient.

In light of the previous result, it is interesting to observe that the fol-
lowing more restricted problem is NP-complete.

restricted broadcast cover: Given a graph G = (V, E),
and positive integers K, M ≤ |V |, is there a broadcast cover f
of G such that f(V ) =

∑
v∈V f(v) ≤ K and maxv∈V f(v) ≤M?

If we set M = 1, this problem reduces immediately to vertex cover.

It is a straightforward exercise to modify the recursive algorithms from
[1] to efficiently solve restricted broadcast cover.

5 Conclusion

This paper introduced the broadcast cover problem and identified some
relationships between it and the broadcast domination problem. The prob-
lems are similar in that they can both be solved in polynomial time on
arbitrary graphs. They also share the property that the restricted version
of the problem is NP-complete. An interesting distinction is the fact that
all connected graphs are βb-radial, while not all are γb-radial. Recall from
Lemma 4.2 that rad(G) ≤ βb(G) ≤ rad(G) + 1. It is interesting to note
that although γb(G) ≤ rad(G), any lower bound on γb(G) must be arbitrar-
ily distant from rad(G). To see this, consider Pn, the path on n vertices.
While γb(Pn) = dn

3 e, rad(Pn) = bn
2 c. This difference can be as great as n

6 .
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