
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Discrete Mathematics 308 (2008) 1165 –1175
www.elsevier.com/locate/disc

On domination and reinforcement numbers in trees
Jean R.S. Blaira, Wayne Goddardb, Stephen T. Hedetniemib, Steve Hortona,

Patrick Jonesc, Grzegorz Kubickid

aUnited States Military Academy, West Point, NY 10996, USA
bClemson University, Clemson, SC 29634, USA

cVanderbilt University, Nashville, TN 37240, USA
dUniversity of Louisville, Louisville, KY 40292, USA

Received 7 March 2005; received in revised form 18 March 2007; accepted 27 March 2007
Available online 7 April 2007

Abstract

The reinforcement number of a graph is the smallest number of edges that have to be added to a graph to reduce the domination
number. We introduce the k-reinforcement number of a graph as the smallest number of edges that have to be added to a graph to
reduce the domination number by k. We present an O(k2n) dynamic programming algorithm for computing the maximum number
of vertices that can be dominated using �(G)− k dominators for trees. A corollary of this is a linear-time algorithm for computing
the k-reinforcement number of a tree. We also discuss extensions and related problems.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Domination; Reinforcement; Trees

1. Introduction

A common question is how does the value of a parameter change as edges or vertices are added or removed. In this
case the parameter is the domination number: the minimum number of vertices to dominate the graph. Domination-
critical graphs, where any additional edge decreases the domination number, were introduced by Sumner and Blitch
[14]. We consider the best edges: how many edges must be added to reduce the domination number, or a related
parameter. This concept was introduced by Kok and Mynhardt [11] and discussed in [8, Chapter 17].

Let G = (V , E) be a graph. For v ∈ V , the (open) neighborhood of v is the set N(v) = {u ∈ V |uv ∈ E}. For a set
S ⊆ V , the open neighborhood of S is N(S) =⋃

v∈S N(v) and the closed neighborhood of S is N [S] = N(S) ∪ S.
A dominating set S ⊆ V satisfies N [S] = V . The domination number �(G) of a graph is the cardinality of a smallest
dominating set. A dominating set S with |S| = �(G) is known as a �-set. Numerous variants of this problem appear in
the literature [8,7].

1.1. Reinforcement number

Kok and Mynhardt [11] defined the reinforcement number of a graph r(G) as the minimum number of edges that
have to be added to G so that the resulting graph G′ satisfies �(G′) < �(G). (If �(G)= 1, then they defined r(G)= 0.)

E-mail addresses: jean.blair@usma.edu (J.R.S. Blair), goddard@cs.clemson.edu (W. Goddard), hedet@cs.clemson.edu (S.T. Hedetniemi),
steve.horton@usma.edu (S. Horton), robomann@yahoo.com (P. Jones), gkubicki@louisville.edu (G. Kubicki).

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.03.067

Author's personal copy

1166 J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165 –1175

One can readily generalize this idea. For example, the question for the fractional domination number (that is, rf) was
considered by Domke and Laskar [3]. See also [2,16].

A natural extension is to define the k-reinforcement number of a graph rk(G) as the minimum number of edges that
must be added to G so that �(G′)� min{�(G)− k, 1} for the resulting graph G′. The k-reinforcement problem applies
to a variety of settings modeled by graphs where dominators have costs but where edges can be added to the graph
(incurring less cost), eliminating the need for some of the dominators. For example, in a network it might be very
expensive to set up a new mirror of a database, but relatively cheap to add a link.

It is easy to show that the k-reinforcement number is determined by how much domination �(G) − k vertices can
do in G. For ease of notation, we define d(�, G) as the maximum of |N [S]| taken over all subsets S with |S|�� (the
inequality is to cater for the case were � exceeds the order). Now, consider a set F of augmenting edges and a �-set S of
G⊕F , the graph formed by adding F to G. It is clear that |F |� |V −NG[S]|. On the other hand, given any set S ⊆ V

one can always choose an augmenting set F of cardinality |V −NG[S]| such that S dominates G⊕ F . It follows that:

Lemma 1.1. For any graph G of order n, rk(G)= n− d(�(G)− k, G).

This paper focuses on properties of the reinforcement number and its variants and the calculation of this for tree.
Hsu [9] provided an algorithm to calculate d(�, T) on a tree T in O(�n3) time. The problem of calculating d(�, G) is
a special case of the maximum coverage problem. Megiddo et al. [12] gave an algorithm which calculates d(�, T) in
O(�n2) time (but actually solves a more general problem). However, we need the case where � is �− 1. So we provide
an algorithm for calculating d(� − k, T) which runs in time O(k2n). As an aside, we also provide an algorithm that
improves on the previous algorithms to O(�2n). A special case of our result was given in [10].

This paper is organized as follows. In the next section, we present an O(k2n) dynamic programming algorithm for
computing the maximum number of vertices that can be dominated using �=�(G)−k dominators for trees. Following,
we extend some previous results for the reinforcement problem. We then use the algorithm to produce a linear-time
algorithm for finding the reinforcement number of a tree. We conclude with some directions for further research. But
first a comment on the hardness of the problem in general.

1.2. Intractability

Since it is a generalization of the NP-complete domination number problem, it is clear that the decision problem

Maximum Coverage
Instance: graph G and integers � and s
Question: Is d(�, G)�s?

is NP-complete. For fixed � the problem is, of course, polynomial-time computable by considering all
(

n
�

)
subsets.

However, it is unlikely that the problem is fixed-parameter tractable, since domination is believed hard (see [4] for
definitions and discussion).

On the other hand, the reinforcement number problem is hard even for specific values of the parameters. For example,
consider the decision problem:

Reinforcement
Instance: graph G
Question: Is r1(G)�1?

Lemma 1.2. The problem Reinforcement is NP-complete.

Proof. The proof is a reduction from 3SAT and uses a minor modification of the standard construction for domination
(see [6]). For a boolean formula �, we produce a graph G� such that � is satisfiable exactly when r1(G�)�1.

Suppose input � in conjunctive normal form has c clauses and a total of m variables. For each clause, create a vertex.
For each variable v, create a K4 with one vertex labeled v and one labeled v̄. Then for each clause, join the clause-vertex
to the three vertices corresponding to the three literals that are in that clause. Finally, add a single vertex a and join it
to all clause-vertices. The result is a graph G�. For example, the graph for (x ∨ y ∨ z)∧ (x̄ ∨ y ∨ z̄) is shown in Fig. 1.

Author's personal copy

J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165–1175 1167

x x̄ y ȳ z z̄

a

Fig. 1. Example G�.

Claim. The mapping � 	→ G� is the desired reduction.

It is clear that �(G�)=m+ 1. If � has a satisfying assignment, then let D be the set of the m vertices corresponding
to the true literals in the assignment. Then each K4 is dominated and each clause-vertex is dominated. Only vertex a is
undominated; thus r1(G�)�1.

Conversely, suppose r1(G�)�1. That is, there is a set D of size m that dominates all but one vertex. Then D must
contain one vertex from each K4, since it cannot miss two of the unlabeled vertices. It follows that D does not dominate
a and so must dominate every clause-vertex. That is, if one sets all the literals corresponding to vertices in D to true,
one has a satisfying assignment.

That is, we have shown that 3SAT reduces to Reinforcement. �

2. Maximum coverage algorithms for trees

In this section we give an O(�2n)-time algorithm for computing the maximum number of vertices in a tree T that
can be dominated by a set of � vertices. We then give another algorithm which runs in time O((�− �)2n). We present
the O(�2n) algorithm first because it is simpler.

2.1. Postorder traversal of the edges

The algorithms use a standard dynamic-programming postorder-traversal approach, motivated by the methodology
of Borie et al. [1] and Wimer (see for example [15]). This uses the fact that a rooted tree on n vertices can be built up
from n trivial trees by the repeated process of adding an edge between the roots of two rooted trees and making one
of these the root of the new tree. There is a set � of parameters which is calculated for each subtree. The main detail
of the algorithm is the choice of �; a recursive formula for � on the combined tree in terms of � of the two subtrees;
and a formula for extracting the desired value from the set � at the root.

Consider a rooted tree T. For any vertex v, we let C(v) denote the children of v, and let Tv denote the subtree
consisting of v and its descendants. For efficient implementation, one uses a postorder traversal and processes the
edges one at a time bottom up. At each vertex v the current value of � is maintained. The invariant is that

at each step and for every vertex v, the value of � gives the correct values of the parameters for the descendant
subtree rooted at v induced by the already-processed edges.

Thus the overall algorithm is to (1) initialize � for all vertices to the value of the trivial tree; (2) call the recursive
procedure Process on the root vertex; and (3) extract the desired value from � at the root. The recursive code has the
outline as follows.

Process (vertex v) {
for each child c ∈ C(v) in turn {

process(vertex c)
apply formula to edge vc

}
}

Author's personal copy

1168 J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165 –1175

The running time is dominated by the n − 1 applications of the formula. (We maintain suitable child–parent
pointers.)

2.2. Maximum coverage using �

The goal is to determine d(�, T). The approach of [15] is to define a set of properties and create a parameter for each
property. In this case, for each property � and each i in the range 0� i��, we are interested in the maximum number
of dominated vertices in Tv using i vertices such that the set has property �. To simplify the formulas, it is better to
allow the set to be smaller: We define:

dv(�, i) is the maximum |NTv [S]| such that S ⊆ Tv , |S|� i and S has property �.

It follows that dv(�, i) is nondecreasing as a function of i.
There are three properties—the three possibilities for the root vertex v:

Property I (“in”) means v ∈ S.
Property D (“dominated”) means v /∈ S and ∃c ∈ C(v) ∩ S.
Property U (“undominated”) means v /∈ S and C(v) ∩ S = ∅.
For example, at least one of dv(I, �(Tv)) and dv(D, �(Tv)) is the order of the subtree.

For the trivial 1-vertex tree we have

dv(I, j)= 1 for j �1 and dv(U, j)= 0 for j �0.

All other possibilities are impossible; we initialize those values to −∞.
The overall value of the algorithm is extracted at the root r at the end:

d(�, T)=max{dr(I, �), dr (D, �), dr (U, �)}.

After initialization, the edges of the tree are processed in a bottom-up fashion. As the algorithm progresses, dv(�, i)

is the appropriate value for the induced subtree consisting of v, the processed edges incident with v, and all descendants
of the children at the ends of these edges. The value of dv(�, i) is overwritten as each descendant edge incident with
v is processed.

The main formula for the algorithm is given in Fig. 2. Basically one has to determine which properties the new tree
and set will have, given the properties of the sets of the subtrees:

In the cases marked with a ∗, the root not in the set is now dominated (and there is a “+1” in the formula). Note that
the for loop in Fig. 2 computes values of dv(�, i) in decreasing order of i. This guarantees that updates to dv do not
interfere with entries in the previous version until the latter are no longer needed.

As an example, consider the tree T of Fig. 3. Assume �=3 and we have already processed all the edges in the subtree
rooted at c, and (separately) the edge ab.

The tables below give the current values of da and dc:

Author's personal copy

J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165–1175 1169

Fig. 2. Processing edge vc.

a

b
c

Fig. 3. Example tree T.

We now process the edge ac (a is the parent and c the child). The first computation performed is da(I, 3):

da(I, 3)← max
0�x �3

da(I, x)+max

{
dc(I, 3− x)

dc(D, 3− x)

dc(U, 3− x)+ 1
= 7.

The entire calculation for da is summarized in the following table:

Since a is the root vertex of the example tree, we take the maximum value from the i = 3 column to answer the
original question. As da(I, 3)= 8, we conclude that 8 vertices of T can be dominated with 3 vertices.

It is easy to modify the algorithm to keep track of the vertices that form an optimal partial dominating set. In the
above example, the value da(I, 3) is determined by da(I, 1) = 2 and dc(I, 2) = 6. This indicates that both a and c
were in, as was one other vertex of Tc.

Theorem 2.1. Given tree T of order n, and an integer 0����(T), the algorithm computes d(�, T) and has time
complexity O(�2n).

Proof. By the earlier discussion, we need only determine the time required to execute the for loop. Since each value
of i requires at most O(i + 1) work, the for loop takes

∑�
i=0 O(i + 1)= O(�2) time.

By multiplying this by the number of iterations that the formula has invoked, it follows that the total complexity is
O(k2n). �

Author's personal copy

1170 J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165 –1175

2.3. Maximum coverage saving k

The goal is to determine d(�(T)− k, T) efficiently. We will use the shorthand (�− k)-set to mean the optimal set.
The key is to observe that one may assume that every subtree Tv has at least �(Tv) − k vertices, or rather, almost this
much.

Lemma 2.2. Suppose graph G is formed from the disjoint union of graphs F and H by selecting a vertex v of F and
joining v to some of the vertices of H. For k�1, if S is a (�− k)-set of G, then

�(F)− k − 2� |S ∩ F |��(F)+ 1.

Proof. Suppose |S ∩ F |> �(F) + 1. Then if one modifies S by replacing S ∩ F by v and a �-set of F, the closed
neighborhood does not decrease, and yet the cardinality of the set does, a contradiction. This establishes the upper
bound.

Let a denote the number of vertices of G needed to dominate all of V (H)−N(v). It follows that |S∩H |�a+1, and
thus |S ∩F |�(�(G)− k)− (a+ 1). But �(G)��(F)+ a− 1, since no vertex can dominate both part of V (H)−N(v)

and V (F)− {v}. This establishes the lower bound. �

Let T denote the set of subtrees of T that appear in the postorder edge traversal algorithm above. (We start with
n 1-vertex graphs and each edge processing creates another one.) The point is that for any F ∈ T, it satisfies the
condition of the above lemma (with H =G− V (F)). That is:

Corollary 2.3. Any (�− k)-set S of G is such that �(F)− k − 2� |S ∩ F |��(F)+ 1 for every F ∈T.

For −1� i�k + 2 we define:

ev(�, i) is the maximum |NTv [S]| such that S ⊆ Tv , |S|��(Tv)− i, S has property �, and �(F)− k − 2� |S ∩
F |��(F)+ 1 for every F ∈T that lies within Tv .

The same three properties are used. For example, ev(I,−1) = |Tv| by taking a dominating set of Tv and adding v

if necessary. For the trivial 1-vertex tree, the only possibilities are:

ev(I, j)= 1 for j =−1, 0 and ev(U, j)= 0 for j =−1, 0, 1.

As before, the overall value is extracted at the root r at the end:

d(�(T)− k, T)=max{er(I, k), er (D, k), er (U, k)}.
The formulas are similar to those given in Fig. 2. Some of the changes are minor: the for loop runs from k+ 2 down

to−1; the range of x for the maximization is increased. However, there is one major change: there are two possibilities
for the domination number of the new tree in terms of the domination numbers of the subtrees:

�(T new
v) is B or B − 1 where B = �(T old

v)+ �(Tc).

We say that the edge e= vc is a reducer if �(T new
v)=B − 1. If the edge is not a reducer, the formulas are virtually the

same; but for a reducer, we have to save i+ 1 on the domination numbers of the two constituent subtrees. For example,
we give the formula for ev(I, i) in Fig. 4. The formulas for ev(D, i) and ev(U, i) are similar.

As an example, consider the tree of Fig. 3. Assume k= 1 and we have already processed all the edges in the subtree
rooted at c, and (separately) the edge ab. The edge ac is not a reducer: �(T new

v) = 3, �(T old
v) = 1 and �(Tc) = 2. The

tables below give the current values of ea and ec. (Remember that i is the number of dominators being saved.)

Author's personal copy

J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165–1175 1171

Fig. 4. Processing edge vc: ev(I, i).

The calculation for ea is summarized in the following table:

Note the value ea(U,−1) marked with ∗. If one is forced to not dominate the root, but allowed to use four vertices,
then the optimal placement is to choose (for instance) the four children of c; but in a �-set, one would only spend two
vertices in Tc, and thus this possibility is excluded by the definition of ea .

By an argument similar to the proof of Theorem 2.1 it follows that:

Theorem 2.4. Given tree T of order n, and an integer 0�k��(T), the algorithm computes d(�(T) − k, T) and has
time complexity O(k2n).

By Lemma 1.1 it follows that we have a linear-time algorithm for the k-reinforcement number rk(T) of a tree T for
fixed k.

3. Reinforcement in trees

In this section we consider the properties of reinforcement in trees.
The value for the path is easily calculated:

Observation 3.1. Let n= 3m+ i with i ∈ {1, 2, 3}. For k�m the path has rk(Pn)= 3(k − 1)+ i.

3.1. Maximum and minimum reinforcement numbers

The canonical upper and lower bounds of Kok and Mynhardt [11] have analogs for k-reinforcement:

Lemma 3.2. For any graph G of order n, and integer 0�k < �(G),

k�rk(G)� kn

�(G)
.

Proof. The lower bound follows since the domination number can be decreased by only one by the addition of an edge.
For the upper bound, it is clear that d(�, G)��(n/�) for 0����, and so rk(G)= n− d(�− k, G)�n− (�− k)(n/�)
= kn/�. �

Equality is easy to achieve. For the lower bound, one example is a wounded spider: let Ws denote the tree resulting
from a star with s leaves where every edge except one is subdivided once. Here �(Ws)=s and rk(Ws)=k for 1�k�s−1.
The tree W6 is shown in Fig. 5.

For the upper bound, there is equality for the disjoint union of equal-size stars. If the stars are not K2, one can
add edges joining the leaf on one star to another star, and so create a tree while preserving the reinforcement number.
Indeed, we define C(a, b) as the caterpillar on n= a(b+ 3) vertices obtained from the path with 3a vertices by adding
b new end-vertices adjacent to every third vertex on the path, starting with the second vertex. Fig. 6 shows C(3, 2). For

Author's personal copy

1172 J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165 –1175

Fig. 5. A tree with rk = k for 1�k�5.

Fig. 6. A tree with maximum r2.

b�1, the caterpillar C(a, b) has �= a and rk = k(b + 3) for k < a, and hence there is equality in the upper bound of
Lemma 3.2.

As a corollary of the above we get:

Corollary 3.3. For any tree T of order n, and integer k�0

k�rk(T)� kn

k + 1
,

and these bounds are sharp.

Proof. The upper bound of Lemma 3.2 is maximized at �= k + 1. �

For most values of n, k and � one can construct a tree T with rk(T)= �kn/��. However, the upper bound in Lemma
3.2 is not achievable for every combination of n, k and �. In particular, when � = n/2, there does not exist a tree T
with r(T) = 2. This can be established from the characterization of connected graphs with domination number n/2.
That involves the corona of a graph: recall that the corona Cor(G) of graph G is obtained by adding a new end-vertex
adjacent to each original vertex. For example, the wounded spider Ws = Cor(K1,s−1).

Theorem 3.4 (Payan and Xuong [13] and Fink et al. [5]). A connected graph G has �(G)= n/2 if and only if G=C4
or G= Cor(H) for some connected graph H.

It turns out that when the domination of a graph is maximum, the reinforcement number is small.

Lemma 3.5. For a graph H of order m, rk(Cor(H))= k for 1�k�m− �(H).

Proof. We have �(Cor(H))=m. Let S be a minimum dominating set of H and let W =V (Cor(H)−N [S]). It follows
that d(m − k, Cor(H))�2m − k, achieved by adding �(H) − k of W to S. Thus by Lemmas 1.1 and 3.2 the result
follows. �

Corollary 3.6. For a tree T with �(T)= n/2, rk(T)= k for 1�k�n/4.

The tree Cor(Ws) shows that the range of k cannot be extended.

Author's personal copy

J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165–1175 1173

3.2. Vertex removal

There is also the question of how the reinforcement number of a tree changes as it is altered. In particular, consider the
impact of vertex removal. The removal of a vertex may dramatically decrease the reinforcement number. An example
is given by taking the caterpillar C(2, b) (the double-star with the central edge subdivided twice): removing one of
the large-degree vertices decreases the reinforcement number from b + 3 to 1. Vertex removal may also dramatically
increase the reinforcement number. An example is given by taking the caterpillar C(2, b) and subdividing the central
edge: removing the new vertex increases the reinforcement number from 1 to b + 3.

3.3. Extension property for �− 1

It turns out that there is a special property for 1-reinforcement in a tree: there always exists a choice of the set S that
achieves d(� − 1, T) that can be extended to a �-set. This result does not extend to other graphs (even cacti, that is,
graphs where each block is either K2 or a cycle), and does not hold true for �− 1 replaced by any �− i with i�2 (see
below).

Theorem 3.7. In a tree T there exists a (�− 1)-set that is part of a �-set.

Proof. By starting with any �-set, it is clear that there exists a spanning forest F of T that is the disjoint union of � stars.
Fix F and label any edge not in F as surplus. Let S be a (�− 1)-set of T.

Consider a surplus edge e = v1v2: clearly �(T − e) = �(T). For T1 either component of T − e, we say that T1 is
overfull if |S ∩ T1|> �(T1), and full if |S ∩ T1| = �(T1). If T1 is overfull, then we can rearrange the vertices of S ∩ T1
to dominate T1 and move one over to the other end of e if necessary, and not decrease the closed neighborhood of S.
By repeated application of this, it follows that

there is a choice of S such that for every surplus edge e neither component of T − e is overfull.

For this S it follows that exactly one component of T − e is full. So, orient each surplus edge away from the full side.
If T1 is the full component of T − e, and e′ is a surplus edge inside T1, then, by counting, the edge e′ must be oriented
towards e. It follows that there is a component F0 in F (the star-forest) such that every surplus edge incident with F0
is oriented towards F0.

Now, consider a surplus edge e = v1v2 with v2 ∈ F0. Suppose S does not dominate T1, the component of T − e

containing v1. Then if we replace S ∩ T1 with a minimum dominating set of T1, we have a set S′ with |S′| = |S| and
|N [S′]|� |N [S]|—we might lose v2 but we gain (at least) one vertex in T1. By repeating the process, we end up with
an S′′ which dominates all the vertices outside F0.

But F0 can be dominated by one vertex, say x. Thus S′′ is part of the �-set S′′ ∪ {x}. �

It follows that the original reinforcement number is determined by the smallest private neighborhood of a vertex in
some �-set:

Corollary 3.8. For every tree T

r(T)=min
D�v |N [v] −N [D − v]|,

where the minimum is taken over all �-sets D and all v ∈ D.

To see that Theorem 3.7 does not generalize to � − 2, consider the octopus created from the star on three edges by
subdividing each edge. Then the unique (� − 2)-set is the central vertex, but this is not contained in any minimum
dominating set. To see that Theorem 3.7 does not generalize to other graphs, consider the following cactus on 7 vertices.
Start with two disjoint P3’s and add a new vertex w adjacent to the middle and one end of each P3. Then {w} is the
unique (�− 1)-set, but is not contained in any minimum dominating set.

Author's personal copy

1174 J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165 –1175

4. Total reinforcement

Recall that the total domination number �t (G) of a graph G is the minimum cardinality of a set S such that N(S)=V ;
that is, every vertex is adjacent to an element of S. A �t -set is one that achieves the bound. One can then define rk

t (G)

as the minimum number of edges that must be added to reduce the total domination number by k (or to its minimum,
viz. 2). In this section we sketch how to extend the tree algorithm for rk to rk

t (G).
Consider an augmenting edge-set F and a �t -set S of G⊕ F . Let I (S) denote the number of isolated vertices in 〈S〉.

It is clear that |F | is at least |V − NG[S]| + |I (S)|/2; on the other hand, given any set S, one can always choose an
augmenting set F of cardinality �|V −NG[S]| + |I (S)|/2� such that S total dominates G⊕ F . It follows that:

Lemma 4.1. For any graph G, rk
t (G) is the ceiling of the minimum of |V −NG[S]| + |I (S)|/2 taken over all subsets

S ⊆ V of cardinality at most �t (G)− k.

4.1. Algorithm

One can extend those ideas to a linear-time algorithm for the total domination version of reinforcement. The approach
is basically the same, except we must now subdivide the property I into two cases based on whether the vertex is
dominated or not. Call these properties ID and IU, respectively. The following table gives the property of the
combined graph given the properties of the subtrees:

We then need to calculate |NG[S]| − |I (S)|/2 for the best S—the reinforcement number is the complement of this
rounded up. The adjustments in the formulas are as follows: an edge joining ID to IU means + 1

2 , an edge joining
IU to IU means +1, an edge joining ID/IU to U means +1. The possibilities for the trivial tree are IU saving
nothing (value= 1

2), and U saving zero or one (value= 0).
We omit the details that allow us to conclude:

Theorem 4.2. There is a linear-time algorithm to compute rk
t (T) for a tree T for fixed k.

5. Conclusion

We provided fast algorithms for computing in trees the maximum domination achievable using k vertices, or using
k vertices less than the minimum required to dominate the tree. It seems likely that these ideas can be extended to
other graph families that have a recursive definition. We also explored the minimum and maximum values of the
k-reinforcement numbers for trees. It might be interesting to see how these parameters behave for other families.

Acknowledgment

We would like to thank Brian Dean for pointing out some of the related literature.

References

[1] R.B. Borie, R.G. Parker, C.A. Tovey, Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on
recursively constructed graph families, Algorithmica 7 (1992) 555–581.

[2] X. Chen, L. Sun, D. Ma, Bondage and reinforcement number of �f for complete multipartite graph, J. Beijing Inst. Technol. 12 (2003) 89–91.
[3] G.S. Domke, R.C. Laskar, The bondage and reinforcement numbers of �f for some graphs, Discrete Math. 167/168 (1997) 249–259.
[4] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness. I. Basic results, SIAM J. Comput. 24 (1995) 873–921.
[5] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985)

287–293.
[6] M.R. Garey, D.S. Johnson, Computers and intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

Author's personal copy

J.R.S. Blair et al. / Discrete Mathematics 308 (2008) 1165–1175 1175

[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[9] W.-L. Hsu, The distance-domination numbers of trees, Oper. Res. Lett. 1 (1981/1982) 96–100.

[10] P.C. Jones, An algorithm to determine the reinforcement number of a tree, M.A. Thesis, University of Louisville, 2002.
[11] J. Kok, C.M. Mynhardt, Reinforcement in graphs, Congr. Numer. 79 (1990) 225–231.
[12] N. Megiddo, E. Zemel, S.L. Hakimi, The maximum coverage location problem, SIAM J. Algebraic Discrete Methods 4 (1983) 253–261.
[13] C. Payan, N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23–32.
[14] D.P. Sumner, P. Blitch, Domination critical graphs, J. Combin. Theory Ser B 34 (1983) 65–76.
[15] T. Wimer, S. Hedetniemi, K-terminal recursive families of graphs, in: Proceedings of the 250th Anniversary Conference on Graph Theory, Fort

Wayne, IN, 1986.
[16] J.H. Zhang, H.L. Liu, L. Sun, Independence bondage number and reinforcement number of some graphs, Trans. Beijing Inst. Technol. Beijing

Ligong Daxue Xuebao 23 (2003) 140–142.

