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Abstract

This paper provides a brief survey of two graph problems related
to dominating set: domination equivalence and broadcast domina-
tion. The former concerns properties of two disjoint sets of vertices
having the same neighborhood. The latter is a generalization of
the standard dominating set problem where dominating vertices can
“broadcast” that domination to variable distances from their source.

1 Introduction and motivation

A dominating set S is a subset of the vertices in a graph such that every
vertex in the graph either belongs to S or has a neighbor in S. The topic
has long been of interest to researchers [12, 13]. The associated decision
problem, dominating set, occupies a prominent place in the computa-
tional complexity literature [11]. This definition also leads naturally to the
associated optimization problem which is to find a dominating set of min-
imum cardinality. Numerous variants of this problem have been studied
[1, 12, 13, 19].

dominating set is NP-complete on arbitrary graphs [11]. It is also
NP-complete on several classes of graphs, including planar graphs [11],
bipartite graphs [6], and chordal graphs [4]. The problem can be solved in
polynomial time on, for example, AT-free graphs [17], permutation graphs
[10], interval graphs [9], and trees [11].

We start with notation and more formal problem definitions. All graphs
in this paper are simple. Let G = (V, E) be a graph with n = |V | and
m = |E|. For any vertex v ∈ V , the neighborhood of v is the set N(v) =
{u | uv ∈ E} and the closed neighborhood is the set N [v] = N(v) ∪ {v}.
Similarly, for any set S ⊆ V , N(S) = ∪v∈SN(v)−S and N [S] = N(S)∪S.
A set S is a dominating set if N [S] = V . The minimum cardinality of a
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dominating set of G is denoted by γ(G). The distance, duv , between two
vertices u and v in G is the smallest number of edges on a path between u
and v in G. The eccentricity, e(v), of a vertex v is the largest distance from
v to any vertex of G. The radius, rad(G), of G is the smallest eccentricity
in G. The diameter, diam(G), of G is the largest eccentricity in G.

The question of when a graph has two disjoint subsets of vertices with
the same neighborhoods has recently received attention [14, 16, 2]. Related
optimization questions include finding a largest and smallest non-trivial
such subset for both open and closed neighborhoods. Collectively, these
are known as domination equivalence problems [2].

In [8], Erwin introduced another variant of the dominating set problem
known as broadcast domination. In this version, the vertices in S (known
as dominators) each have an associated nonnegative integer that can be
thought of as broadcast range. Then vertices not in S are dominated if they
are within the broadcast range of some dominator. More formally, we define
a dominating broadcast as an integer valued function f on the vertices such
that every vertex of the graph is distance at most f(v) from some vertex
v that has f(v) > 0. A dominating broadcast is optimal if the sum of the
costs of the dominators across all vertices in the graph is minimized over
all choices of such functions. These costs are typically taken to be the f(v)
values. Some related problems are discussed in [7].

This paper is organized in the following way. Some problems related to
domination equivalence are discussed in the next section. Section 3 pro-
vides an overview of the broadcast domination problem. Section 4 contains
a brief summary and some concluding remarks.

2 Domination Equivalence

Given a graph G = (V, E), a de pair (domination-equivalent pair) consists
of two disjoint sets R and B with N [R] = N [B]. Similarly, an ode pair
(open domination-equivalent pair) consists of two disjoint sets R and B
with N(R) = N(B). One can think of R and B as red and blue colored
vertices, respectively, with the constraint requiring that every vertex in the
graph that has a red neighbor also has a blue neighbor, and vice-versa. If
red and blue represent competing sides in some contest, then colorings of
V that satisfy N [R] = N [B] (or N(R) = N(B)) represent cases where, at
every v ∈ V , the influence of red and blue is in some sense balanced.

A trivial de or ode pair can be obtained in any graph if R and B are
empty. In addition, if G has isolated vertices, another trivial ode pair is
obtained by coloring isolates red or blue in an arbitrary fashion. We will
ignore these cases.
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Necessary and sufficient conditions for the existence of non-trivial de
and ode pairs are known. In [19], Ore observed that the complement of
any minimal dominating set is also dominating. Thus a non-trivial de pair
always exists in a connected graph. Jacobs and Jamison [16] have shown
that a non-trivial ode pair exists if and only if the graph has an adjacency
matrix that is not sign-nonsingular. This property can be detected in poly-
nomial time following results of Robertson, Seymour, and Thomas [20] and
McCuaig [18]. An interesting corollary is that a tree has an ode pair if and
only if it does not have a perfect matching.

A de pair is said to be full if N [B] = N [R] = V . Similarly, an ode pair
is full if N(B) = N(R) = V . Full de pairs exist for all graphs; take any
minimal dominating set and its complement. On the other hand, deciding
if a graph has a full ode pair is equivalent to asking if it has two disjoint
total dominating sets which was shown NP-complete in [14].

From an optimization standpoint, there are several questions that could
be addressed. One could investigate the cardinality of the common neigh-
borhood, the combined cardinality of the red and blue sets, or the cardi-
nality of just one of these sets. This paper will report on the latter, with
four natural questions resulting. We use the notation de(G) to represent
the minimum cardinality of a member of a non-trivial de pair, and DE(G)
to represent the maximum cardinality of a member of a de pair. We use
ode(G) and ODE(G) analogously for ode pairs.

First consider DE(G).

Theorem 2.1 (Blair et. al. [2]) For every graph G without isolates, DE(G) =
n − γ(G).

This result follows from the observation that any de pair can be extended
to a full pair by adding uncolored vertices to the red and blue sets. The
complexity of computing DE(G) for arbitrary graphs is therefore linked
to computing γ(G). Similarly, algorithms for computing γ(G) for special
graphs classes like trees and series-parallel graphs can be used to compute
DE(G) as well. There is a large and well-established literature on such
algorithms [5, 21].

Blair et. al. [2] provides bounds and complexity results for arbitrary
graphs, as well as efficient algorithms for computing de(G), ode(G), and
ODE(G) when G is a tree. Their results for bounds are summarized below.

Theorem 2.2 For any graph G of order n:
(a) 1 ≤ de(G) ≤ n/2 if G is nonempty.
(b) 1 ≤ ode(G) ≤ n/2 if G has an ode pair.
(c) 1 ≤ ODE(G) ≤ n − 2 if G has an ode pair and is isolate free.
These bounds are all sharp except for the upper bound on de(G).
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The work of Blair et. al. [2] also provides algorithms to compute de(G),
ode(G), and ODE(G) for trees. They further establish that computing
these values for arbitrary graphs is NP-complete. The proofs involve re-
ductions from variants of the satisfiability problem.

3 Broadcast Domination

All graphs in this section are connected. A function f : V → {0, 1, ..., diam(G)}
is a broadcast if for every vertex v ∈ V , f(v) ≤ e(v). The set of broadcast
dominators defined by f is the set Vf = {u | f(u) > 0}. The set of vertices
that a vertex v can hear is Hf (v) = {u ∈ V | duv ≤ f(u)}. We will omit
the subscript f when the broadcast function is clear from the context. The
cost of a broadcast f incurred by a set S ⊆ V is f(S) =

∑
v∈S f(v). Thus,

f(V ) is the total cost incurred by broadcast function f .
A broadcast is dominating if |H(v)| ≥ 1 for every vertex v of G. The

term γb(G) denotes the minimum cost of a dominating broadcast on G. We
will refer to a dominating broadcast of cost γb(G) as an optimal broadcast.

Although the range of a broadcast function is {0, 1, ..., diam(G)}, we
never need to assign values larger than rad(G) to any vertex in order to
achieve an optimal broadcast. If we choose a vertex v of minimum eccen-
tricity and assign f(v) = rad(G) while assigning f(w) = 0 to all other
vertices w, the resulting broadcast is dominating for G. We will call any
dominating broadcast with only one non-zero f(v) value a radial broadcast.
Graphs for which some radial broadcast is an optimal broadcast are called
radial [7].

A broadcast is efficient if every vertex hears exactly one broadcast, that
is, for every v, |H(v)| = 1. The following interesting result is from [7].

Theorem 3.1 (Dunbar et. al. [7]) Every graph G has a γb(G)-broadcast
that is efficient.

The proof of this theorem is constructive in the sense that it shows how
any broadcast can be transformed into an efficient broadcast with the same
total cost.

If we impose a fixed upper bound on f(v), we can prove a complexity
result for the problem.

restricted broadcast domination: Given a graph G =
(V, E), and positive integers K, M ≤ |V |, is there a broadcast
domination f of G such that

∑
v∈V f(v) ≤ K and maxv∈V f(v) ≤

M?

Theorem 3.2 restricted broadcast domination is NP-complete.
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Proof. If we set M = 1, this problem reduces immediately to dominating
set.

Note that the complexity status of broadcast domination (without any
broadcast power restrictions) is open.

The standard broadcast domination problem can be solved efficiently
for a variety of special graph classes. Solutions for paths, cycles, complete
graphs, and grid graphs are given in [7]. In [3], polynomial time algorithms
are given for trees, series-parallel graphs, and interval graphs. Crudely,
these algorithms recursively decompose a given instance of the problem
into smaller instances, solve related problems for the small instances, and
then assemble the results to form solutions for the original instance. The
algorithms for trees and series-parallel graphs rely on theory concerning
recursive graph algorithms developed in [21] and [5]. Some of the algorithms
from [3] also solve restricted broadcast domination for the stated
graph classes.

Some experimental work has been done for the broadcast domination
problem as well. In [15], the authors formulate the problem using integer
programming techniques and then solve a variety of test instances using
CPLEX optimization software.

4 Summary

This paper summarizes current research on two problems related to domi-
nating set.

There are several open questions that merit further research. In addi-
tion to measuring optimality in different ways as suggested in Section 2,
a more general domination eqiuvalence-like problem could be investigated
where there are k > 2 disjoint sets S1, S2, . . . , Sk with N [S1] = N [S2] =
. . . = N [Sk]. Another interesting question is the complexity status for the
standard broadcast domination problem for arbitrary graphs.
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