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1. Introduction

My area of research is approximation theory. Approximation theory can be de-
scribed most briefly as the study of how well functions can be approximated by
classes of other (usually simpler) functions. This definition is of course too simplis-
tic; approximation theory is a very rich, active research area of both pure and applied
mathematics.

With regard to applications, the current needs of the scientific community often
lead to interesting, and sometimes purely mathematical, questions for approximation
theorists. Presently there is demand for understanding approximations when one is
given unstructured data coming from a very high-dimensional space. Handling such
problems is difficult. For example, conventional approximation techniques, such as
finite element methods, require one to create a mesh based on the data sites, which
can be expensive to compute even in small dimensions (especially if one is dealing
with domains having complicated geometry or ones with moving boundaries). These
issues lead naturally to a need for so-called “meshless” methods. My current research
area, radial basis functions (RBFs), is a promising meshless tool for handling multi-
dimensional scattered data. For me, this field has just the right blend of mathematical
beauty and practical application.

2. A Brief Overview of Radial Basis Functions

RBFs are probably best known for their applications to scattered data interpolation
problems. Given a finite set of points X ⊂ Rn and data associated with each point,
the objective is to find a continuous function that fits the data at the points. A radial
basis function is a positive definite function φ : Rn → R that happens to be radial,
i.e. φ(x) = φ(‖x‖). Given such a function, one searches for an interpolant that is
a linear combination of shifts of φ. Concretely, we look for an interpolant from the
following function space:

Fφ,X := span {φ(· − xj) |xj ∈ X} ,

i.e., φ generates a “basis” of the approximation space. If φ is an RBF, then a unique
interpolant always exists, and the existence of an interpolant does not depend on the
number or location of the data sites. Such functions do exist, and popular examples
of RBFs include Gaussians, Hardy multiquadrics, thin plate splines, and Wendland
functions. A good reference for RBFs is Wendland’s book [13].

While RBFs were initially studied for interpolation problems on Rn, the theory
reveals several bonuses. First, RBFs can be generalized to provide approximation
when data is collected on general manifolds, or even on locally-compact groups [3, 14].
Secondly, RBFs can also be “customized” to develop new approximation techniques.
They can be modified to construct approximations when the data is obtained in
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a variety of ways, whether it be by point evaluations (interpolation), derivative or
integral information, or other useful linear functionals. Hence RBFs can be used
to numerically solve partial differential equations, for example. Further, RBFs can
be used to develop approximations that preserve certain physical properties of the
underlying target function, e.g. being divergence-free or curl-free. These ideas can
also be extended to divergence-free and curl-free approximation on manifolds. Much
of my research thus far has addressed aspects of the mathematical development of
the divergence-free and curl-free RBF theory.

3. My Results

This section contains various results stemming from my research.

3.1. Motivation. Many physical applications involve vector fields that are divergence-
free (∇ · f = 0) or curl-free (∇ × f = 0), such as compressible fluids and magnetic
fields, to name a few. To successfully construct approximants that have these prop-
erties, matrix-valued RBFs were introduced by Narcowich and Ward in 1994 [11].
They constructed matrix-valued functions that yield divergence-free interpolants at
scattered points. Constructing such functions turns out to be fairly simple. If φ is a
scalar-valued function consider

Φdiv :=
(
−∆I +∇∇T

)
φ,

where ∇ is the n × 1 gradient operator and ∆ = ∇T∇ is the Laplacian operator.
Then Φdiv is an n×n matrix-valued function with divergence-free columns. Further,
if φ is an RBF, this function can be used to produce divergence-free approximations.
A similar construction works for the curl-free case. Indeed, the kernel

Φcurl := −∇∇T φ

produces curl-free approximants.
It is natural at this point to ask how “close” an RBF approximation is to the un-

known function generating the data, also known as the target function. This question
has been historically answered following the “native space” framework. Each scalar
RBF φ gives rise to a space of functions called the native space of φ, denoted by Nφ.
These are Hilbert spaces for which φ is the reproducing kernel, i.e. Nφ is endowed
with an inner product (·, ·)Nφ

such that if f ∈ Nφ, then (f, φ(·− y))Nφ
= f(y). There

is an analogue to this for matrix-valued kernels. Native spaces tend to be small, so
such error estimates can be quite limiting. Finding approximation estimates for func-
tions outside the native space is sometimes referred to as “escaping” the native space.
While I have worked on other aspects of the theory, the main focus of my work has
been to escape the native space when using divergence-free or curl-free approximants.

The rest of the section contains a snapshot of my research. The first results involve
characterizing the native space in terms of more concrete, well-known function spaces.
Other results are centered around the numerical stability of the interpolation process
which, somewhat surprisingly, is directly related to the ability to escape the native
space. The error estimates follow. There are also a few theorems extending these
ideas to tangent vector approximation on S2, where we also us a “doubling trick” to
double the approximation rates when the target is smooth and give an interesting
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inverse result. Finally, we give an RBF Helmholtz-Hodge decomposition technique
on S2, which has potential geophysical applications.

3.2. A Characterization of NΦdiv
. It is useful to work with concrete, well-known

function space norms instead of abstract native space norms. The following result,
from [5], gives us another form of the native-space inner-product and ultimately allows
us to realize native spaces as Sobolev spaces with equivalent norms. The Fourier and
functional notation below is standard, we use A+ to denote the pseudo-inverse of a
matrix A, and vector functions will be given in bold-face.

Theorem 1. Suppose that φ ∈ C2(Rn) ∩ L1(Rn) is a positive definite function such
that ∆φ ∈ L1(Rn). Define

Gdiv :=

{
f ∈ L2 ∩ C :

∫
Rn

f̂∗(ξ)Φ̂+
div(ξ)f̂(ξ)dξ < ∞ and ξT f̂(ξ) = 0 a.e.

}
and equip this space with the bilinear form

(f ,g)Gdiv
:= (2π)−n/2

∫
Rn

ĝ(ξ)∗Φ̂div(ξ)
+f̂(ξ)dξ.

Then Gdiv is a Hilbert space with inner product (·, ·)Gdiv
and reproducing kernel Φdiv.

Hence Gdiv = NΦdiv
and the inner products are the same.

There is of course an analogous curl-free theorem, which we omit here. As a
corollary, if the Fourier transform of φ has algebraic decay the native spaces of Φdiv

and Φcurl are subspaces of Sobolev spaces. Indeed, if φ̂ satisfies

(1) C1

(
1 + ‖ξ‖2

2

)−(τ+1) ≤ φ̂(ξ) ≤ C2

(
1 + ‖ξ‖2

2

)−(τ+1)
,

then NΦdiv
(Rn) is the subspace of Hτ (Rn) consisting of divergence-free functions with

a vanishing moment. We denote the space of Sobolev functions with a vanishing

moment by H̃τ (Rn). The norm for this space, which given (1) is equivalent to the
native space norm, is given by

‖f‖2eHτ (Rn)
:=

∫
Rn

‖f̂(ξ)‖2

‖ξ‖2
2

(
1 + ‖ξ‖2

2

)τ+1
dξ.

While it is not hard to show that this class of functions is Sobolev, it can be shown
that the norm is not equivalent to a Sobolev norm on Rn. However, if we restrict
our attention to compact sets, then these spaces are Sobolev spaces with a norm
equivalent to a Sobolev norm. This result is from [5].

Theorem 2. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Then we
have

Hτ (Ω) =
{

f |Ω, f ∈ H̃τ (Rn)
}

.

Furthermore, the norm ‖ · ‖Hτ (Ω) is equivalent to ‖ · ‖ eHτ (Rn).

Realistically we always approximate on compact domains, so these results imply
that when φ satisfies (1) we can deal with standard Sobolev spaces.
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3.3. Stability. Let X ⊂ Rn be a finite set of distinct points. The following result
gives insight into the conditioning of the interpolation matrix for divergence-free
kernels on X, denoted by AX,Φdiv

, by estimating the norm of its inverse. Since the
interpolation matrix is symmetric and positive definite, this amounts to bounding its
lowest eigenvalue, λmin(AX,Φdiv

), from below. Estimates are typically found in terms
of

qX :=
1

2
min
j 6=k

‖xj − xk‖,

which is known as the separation radius of X. The following result is from [5].

Theorem 3. Let φ be an even positive definite function, which possesses a positive

Fourier transform φ̂ ∈ C(Rn/0). With the function

M(σ) := inf
‖ξ‖2≤σ

φ̂(ξ)

a lower bound on the smallest eigenvalue of the interpolation matrix is given by

λmin(AX,Φdiv
) ≥

(
σ2

16π

)n
2
+1

M(σ)π

(4π)nΓ
(

n+2
2

)
for any σ > 0 satisfying

σ ≥ C̃/qX .

Modifying the proof of this slightly gives us the corresponding curl-free result,
which we omit. Also, if φ has finite smoothness it can be shown that, in terms of the
order of the separation radius, these stability estimates are the best possible.

3.4. Error Estimates: Escaping the Native Space. Now we give error estimates
for functions that are too rough to be in the native space. The error estimates we
give are in terms of the mesh norm. Given a compact set Ω ⊂ Rn and a finite set
X ⊂ Ω, the mesh norm is given by

hX,Ω := sup
x∈Ω

inf
xj∈X

‖x− xj‖2.

Another important value in the estimate is the mesh ratio, given by ρX,Ω := hX,Ω/qX .
In what follows, we will let IXf be the divergence-free RBF interpolant to f on X
if f is divergence-free, and the curl-free RBF interpolant to f on X if f is curl-free.
Also, we assume that the Fourier transform of φ has algebraic decay as in (1). The
following result is from [6] in dimension n = 2 or 3. For technical reasons, we assume
that τ = k + s with k > n/2 and that β > n/2 is an integer.

Theorem 4. Let τ and β be given as above with τ ≥ β, and let Ω ⊂ Rn be compact,
simply connected, and have Ck,1 boundary. Then if f ∈ Hβ(Ω) is a divergence-free
(curl-free) function, we have the estimate

‖f − IXf‖W µ
q (Ω) ≤ Ch

β−µ−n(1/2−1/q)+
X,Ω ρτ−β

X,Ω‖f‖Hβ(Ω) ∀ hX,Ω ≤ CΩ,

where µ is any integer such that 0 ≤ µ < β − n/2 and C is a constant independent
of X and f .
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Note that if, as hX,Ω gets smaller, the data sites are chosen so that ρX,Ω ≤ C for some
constant C, we get standard Sobolev estimates. We should also note that these results
depend heavily on the existence of a divergence-free band-limited interpolant, which
is interesting in its own right. The following result, and its curl-free counterpart, is

from [6]. Here H̃τ
div is the subspace of H̃τ of divergence-free functions, and B̃σ

div ⊂ H̃τ
div

contains only functions whose Fourier transforms are supported in the ball of radius
σ.

Theorem 5. Let τ, t ∈ R such that τ > n/2 and t > 0. Given f ∈ H̃τ+t
div and a point

set X ⊂ Rn with separation distance qX , there exists a function fσ ∈ B̃σ
div such that

f |X = fσ|X and ‖f − fσ‖ eHτ ≤ 5 · dist eHτ (f , B̃σ
div) ≤ 5κ−tqt

X‖f‖ eHτ+t .

with σ = κ/qX , where κ ≥ 1 depends on only τ and n.

3.5. Divergence-Free Approximation on Manifolds. All results in this section
are from [7], which is specific to divergence-free tangent fields on S2. However, the
ideas can be extended to more general manifolds. In [12], Narcowich, Ward, and
Wright introduced the kernel Ψdiv, which generates vector interpolants that are tan-
gent to the sphere and have zero surface-divergence. Given an RBF φ, we can con-
struct Ψdiv via

Ψdiv(x, y) := QT
x

(
−∇∇T φ(x, y)

)
Qy,

where Qp is the 3× 3 matrix such that Qpz = p × z. Given a tangent vector field f
sampled on a data set X ⊂ S2, one can construct an interpolant of the form

IXf(x) =
N∑

j=1

Ψdiv(x, xj) sj,

where sj is tangent to the sphere at xj. Sharp stability estimates for these kernels were
given in [7], but we omit them here. It is interesting to note that both the stability
estimates, and error estimates given below, depended heavily on the curl-free results
on R3.

For the rest of this section, we assume that φ is an RBF satisfying

(2) C1

(
1 + ‖ξ‖2

2

)−(τ+3/2) ≤ φ̂(ξ) ≤ C2

(
1 + ‖ξ‖2

2

)−(τ+3/2)
,

Below is an error estimate for Sobolev functions too rough to be in the native space
of Ψdiv. Here, for technical reasons, we assume that τ = k + s with 0 ≤ s < 1 and
k > n/2 is an integer.

Theorem 6. Let τ ≥ β > 1 and let φ be an RBF satisfying (2). Also, let X =
{xj}N

j=1 ⊂ S2 be a set of distinct points with mesh norm hX , separation radius qX

and mesh ratio ρX = hX/qX . If f ∈ Hβ
div(S2), and if µ is an integer such that

0 ≤ µ ≤ bβc − 1, we have

‖f − IXf‖W µ
q (S2) ≤ Cρτ−β

X h
β−µ−2(1/2−1/q)+
X ‖f‖Hβ(S2).

There are additional results stemming from the fact that we are working on the
sphere. Using a “doubling trick,” we can show that the approximation rates are
doubled for very smooth functions.
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Theorem 7. Let τ be given as above, µ be an integer satisfying 0 ≤ µ < k − 1, and
let f ∈ H2τ−µ

div (S2). Then

‖f − IXf‖Hµ(S2) ≤ Ch
2(τ−µ)
X ‖f‖H2τ−µ(S2).

Finally, we have an inverse result. That is, given a specific approximation rate, we
can completely characterize the class of functions that our interpolants approximate
at that rate. Here we must assume that all node sets involved are ρ-uniform, i.e. the
mesh ratio is bounded uniformly for all node set.

Theorem 8. Let τ > 1 and let φ be an RBF satisfying (2). In addition, let F be a
ρ-uniform family. If for some continuous vector field f there are constants 0 < µ ≤ τ
and cf > 0 such that

‖f − IXf‖L2(S2) ≤ cfh
µ
X

holds for all X ∈ F , then, for every 0 ≤ β < µ, f ∈ Hβ
div(S2).

3.6. Vector Decomposition on S2. According the the well-known Hodge decom-
position, every function on the sphere can be decomposed into two orthogonal com-
ponents: one is divergence-free and one is curl-free. Given a vector field tangent to
S2, we will denote this decomposition as

f = fdiv + fcurl.

In [8], a scheme was created that will allow us to approximate each of these compo-
nents simultaneously given only point evaluations of f .

Naturally, there is a curl-free counterpart the the divergence-free SBF, which we
denote by Ψcurl. Given this and Ψdiv, we can construct a new kernel

Ψ := Ψdiv + Ψcurl.

Using shifts of Ψ, be build an interpolant to f of the form

IXf(x) =
N∑

j=1

Ψ(x, xj) sj,

where sj is tangent to the sphere at xj. Now the approximant is (quite easily)
decomposed as follows

IXf(x) =
N∑

j=1

Ψ(x, xj) sj =
N∑

j=1

Ψdiv(x, xj) sj︸ ︷︷ ︸
Div. free

+
N∑

j=1

Ψcurl(x, xj) sj︸ ︷︷ ︸
Curl free

.

As it turns out each term of the decomposition approximates its counterpart in the
Hodge decomposition of the target function. The following result is from [8].

Theorem 9. Let τ ≥ β > 1 and let φ be an RBF satisfying (2). Also, let X =
{xj}N

j=1 ⊂ S2 be a set of distinct points with mesh norm hX , separation radius qX

and mesh ratio ρX = hX/qX . If f ∈ Hβ(S2), then for 0 ≤ µ ≤ bβc − 1 we have the
following error estimates

‖fdiv − (IXf)div‖Hµ(S2) ≤ Cρτ−β
X hβ−µ

X ‖f‖Hβ(S2)

‖fcurl − (IXf)curl‖Hµ(S2) ≤ Cρτ−β
X hβ−µ

X ‖f‖Hβ(S2).
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Furthermore, if f ∈ H2τ−µ(S2) we have the estimates

‖fdiv − (IXf)div‖Hµ(S2) ≤ Ch
2(τ−µ)
X ‖f‖H2τ−µ(S2)

‖fcurl − (IXf)curl‖Hµ(S2) ≤ Ch
2(τ−µ)
X ‖f‖H2τ−µ(S2).

4. Future Work

My current interests can be organized into three areas: vector approximation on
manifolds, problems concerning scalar RBFs, and applications.

4.1. Vector Approximation on Manifolds. A few problems for the short-term are
as follows. The use of smooth kernels for tangent vector types of approximations lead
to several interesting results; the theory thus far only addresses kernels that have finite
smoothness. Also, current projects include a poloidal/toroidal RBF decomposition
that should be of interest in magneto-hydrodynamics [1]. As more of a long-term
interest, we note that some problems require one to model flow across manifolds
other than the sphere, and these manifolds might even change in time. Tangential
RBFs could prove useful in modeling such problems.

4.2. Scalar RBF Topics. RBFs can be used to generate finite difference or quadra-
ture methods, and the numerical results are encouraging. To be numerically feasible,
the weights should satisfy certain conditions, which are currently under investigation.
Also, it is well known that matrices associated with RBFs are ill-conditioned. We
are currently investigating a construction for a preconditioners when one is working
on the sphere. As more of a long-term goal, we note that error estimates for rough
functions when Gaussian RBFs are used have not been given, and would be of much
interest.

I’m also interested in RBFs applied to transport problems, where an RBF approx-
imation can be used to model the mass (or mass density). Numerical solutions to
transport schemes are notoriously unstable and difficult to approximate. However,
recent work shows that RBFs might be useful for such approximations. Lorentz,
Narcowich and Ward were able to derive error estimates for a simple example on
the circle [9]. More recently, Flyer and Wright investigated transport on the sphere
[4]. They were able to prove eigenvalue stability for linear advection on the sphere,
and provided several promising numerical examples of the more difficult problem of
deformational flow. These results are very encouraging, and the area is wide open
for a rigorous theoretical framework.

4.3. Applications. As far as direct applications in my own research, the curl-free
RBFs have been used successfully in an astrophysical application related to dark
matter [2]. However, there is much potential for applications of divergence-free kernels
both on Rn and the sphere, the most obvious of which would be applications to
modeling fluids [10]. Also, applications of tangential vector RBFs to geophysics are
currently under investigation.
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