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ABSTRACT

We present a test statistic for uniformity based on the convolution of iid uniform random

variables. By using the software package A Probability Programming Language, we are able

to find the exact distribution of the statistic for sample sizes thru n = 50, thus exact signif-

icance levels are attainable. The test statistic is designed with the purpose of finding shifts

in the mean of an underlying distribution, relying on the probability integral transformation

to create the uniform data. Monte Carlo simulation is used to show a significant increase

in power over the benchmark Anderson–Darling test statistic. In this paper we introduce

the statistic so that in a companion paper we can show the statistic’s use to support fur-

ther research in assisting in the planning and improvement of power of sequential censored

life-testing.

Keywords: Computational Algebra Systems, Exact Distributions, Conditional Order

Statistics, Lifetesting.
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1 INTRODUCTION AND LITERATURE REVIEW

Testing for uniformity in a sample has many applications, many of which are explained

in Chapter 8 of Goodness-of-fit Techniques, (D’Agostino and Stephens, 1988). One spe-

cific application comes from lifetesting, when the components have a reliability distribution

that is continuous, but not necessarily uniform. Given a set of continuous random variates,

x1, x2, . . . , xn and a null hypothesis that the data comes from the underlying distribution X

which has cdf F (x), it is very well known that under the null hypothesis, U = F (X) has the

standard uniform distribution, U(0, 1). This result, known as the probability integral trans-

form (PIT), can be used in transforming data to the uniform distribution so that uniformity

tests can be performed for various purposes.

We present a test for uniformity that, relying on the PIT, will help us determine if the

mean of experimental data, µa has shifted from that of µ0. The Anderson–Darling statistic,

A−D = −n− 1

n

n∑

i=1

[(2i− 1) ln(u(i)) + (2n− 1− 2i) ln(1− u(i))],

is widely used because of its generally high power, compared to other uniformity test statis-

tics, when looking for changes in the mean (Stephens, 1974). Our purpose is to find a test

statistic that gives high power, preferably a higher power than the A–D statistic. With the

availability of A Probability Programming Language (APPL) (Glen, et. al., 2001), we are

able to find exact distributions of certain functions of random variables, specifically in this

case the convolution of iid U(0, 1) rvs, and use these distributions to devise test statistics to

find shifts in the mean of the underlying data. We present some characteristics of our statis-

tic and discuss our eventual objective, that of improving sequentially censored lifetesting

statistical inference, research reported in a companion paper.

2 THE TEST STATISTIC

The test statistic we propose, Tn, has the distribution of the convolution of iid U(0, 1) rvs:

Tn =
n∑

i=1

Ui =
n∑

i=1

F (Xi).
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Prior to settling on this statistic, we explored other functions of iid U(0, 1) rvs. One option we

explored was finding the distribution of C =
∑n

i csc(Ui), as the cosecant function magnifies

the statistic when the tails are too fat. The magnification happens at a quicker rate than

that of the − ln(U), and we found this statistic had slightly higher power than A–D, when

testing for shifts in σa away from σ0. The statistic had appreciably less power, though, when

testing for changes in µ, a fact geometrically understandable, as the changes in µ do not

exaggerate the test statistic quickly. Furthermore, the exact distribution of C could not

be found, and critical points had to be estimated with Monte Carlo simulation. We also

considered min(Ui) and
∑n

i=1 tan(Ui) and found similar results.

We found considerable success with the test statistic Tn =
∑n

i=1 Ui as a test for unifor-

mity. Finding the distribution of the convolution of n iid U(0, 1) random variables becomes

intractable by hand, once n > 4. However, by using APPL, we are able to determine the

exact distribution of Tn for reasonable sample sizes. The distribution of Tn has n segments

describing the PDF. Thus, the distribution of T2 (the standard triangular distribution) has

two segments, T3 has three, and so on. As an example of a complete PDF, the distribution

of T7 is the following:
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Interestingly, the PDF of T50 requires 91 pages of ASCII text to express. The distribution of

Tn for n ≤ 50 can be found at the first author’s web site, www.dean.usma.edu/math/people/glen.

Since the distribution of Tn is exactly known, the exact critical values are calculable, and

exact significance levels are attainable for any sample of data. Table 1 shows the critical

values used for our power simulations. For example the lower critical point for α = 0.05 and

sample size 10 is listed as 3.49611347, but can be found to at least 40 digits in Maple, Version

7 (Maple 2001). The test procedure is simply this: receive the failure data (x1, x2, . . . , xn),
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find
∑n

i=1 FX(xi) = Tn, then calculate p-value of the statistic using APPL, need for its ability

to produce the exact distribution of convolutions of iid U(0,1) rvs up to size n = 50.

Table 1: Estimated critical values for Tn at various sample sizes and levels of significance

n 0.05 0.95

5 1.43464988 3.56535012

10 3.49611347 6.50388653

15 5.65912370 9.34087630

20 7.87489672 12.1250937

25 10.1244286 14.8755701

30 12.3979591 17.6020409

35 14.6896782 20.3103218

40 16.9958021 23.0041979

45 19.3137005 25.6862995

50 21.6414577 28.3579250

3 POWER COMPARISONS

As mentioned before, we are interested in finding shifts in µ0 given the all parameters known

null hypothesis that X has cdf F (x). As our intended purpose for the test statistic is to

assist in the lifetesting task of finding changes in mean lifetime of items on test, this power

simulation varies µa from µ0, but fixes the standard deviation, where possible. We fixed

σ where possible to isolate the power of the test to find shifts in µ, as changes in mean

lifetime of systems are often most relevant. We chose the Normal, Exponential and Gamma

distributions as parent distributions for our null hypotheses. In the case of the Normal and

Gamma distributions, we fixed σ0 = 1 and only varied µ above and below µ0. In the case of

the Exponential, we have no choice but to vary µa and σa, as both depend on the parameter

λ. We were interested in performing a similar simulation with the Weibull distribution,

however, fixing σ and varying µ is not always possible, since the Weibull parameters are not

readily solved for in such a manner, as not all combinations of mean and variance are possible
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with the Weibull distribution. Table 2 gives the various parameters, means, and variances,

for each simulation of the Normal, Exponential, and Gamma null hypothesis distribution.

Table 2: Distribution families, parameters, mean and variances for Monte Carlo Simulation

Normal Distribution, H0 : µ = 1, fixed σ = 1

µa -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

Exponential Distribution, H0 : λ = µ = 1

λa = 1
µa

0.4 .6 0.7 0.8 0.9 1.25 1.5 1.9 2.3 2.7

Gamma Distribution, H0 : α = µ = 2.1, β = 4.41 fixed σ = 1

αa = µa 1.1 1.3 1.5 1.7 1.9 2.3 2.5 2.7 2.9 3.1

βa 1.21 1.69 2.25 2.89 3.61 5.29 6.25 7.29 8.41 9.61

Figures 1, 2, and 3 give the graphical results of our simulation. We chose sample sizes

of n = 5 and n = 25 and compared the results of the A–D and Tn tests. The results show

significant improvement in power for all three distributions. For example, in the Normal

power experiment, where n = 5 and µa = 0.6, the power for A–D is 26% and the power for

Tn is 37%, a 42% increase in power. Similarly in the Gamma experiment, where n = 25 and

µa = 2.3, the power increase is from 17% to 28%, a 64% increase in power over the A–D

statistic.

An important note involves the complexity of this Monte Carlo simulation. The simu-

lation requires, among other things, the PIT on the Gamma distribution. Of course, the

CDF of the Gamma is not in closed form. Currently the simulation is only possible by the

APPL procedures working in the Maple (Maplesoft 2002) environment. For example, in

order to accomplish the PIT, APPL is able to create the CDF of the null-hypothesis gamma

distribution with α = µ = 2.1 and β = 4.41, which has the form
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0 < x, relying on Maple’s WhittakerM function, a solution to a differential equation. As

a result, each dot on the charts in Figures 1, 2, and 3, represents n = 5000 samples, a
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substantial amount of computing time, considering the simulation was done in Maple.

4 CONCLUSIONS AND FURTHER RESEARCH

In this paper we introduce Tn as an important test statistic for uniformity for the class of tests

relying on the PIT to transform continuous lifetest data. The statistic has the advantages of

higher power that of the benchmark A–D statistic and also an exactly known distribution,

thus p-values for samples can be found precisely. Our intent is to explain, in a companion

paper, the use of the Tn in sequential censored lifetesting. We will present a methodology

that gives statistical inference to censored tests by combining conditional order statistic

distributions with the Tn statistic to provide exact p-values real-time during the lifetest

experiement. This method will provide test designers some options in designing lifetests

that achieve necessary levels of statistical power, while minimizing the costs of running the

tests.
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Figures
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Figure 1: Results of Monte Carlo power simulation with underlying normally distributed

data, σ = 1 and type I error α = 0.05. Under H0, µ = 0. Note the Tn statistic enjoys

significantly higher power than does the A–D statistic, expecially when µa is close to µ0.
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Exponential Distribution
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Figure 2: Results of Monte Carlo power simulation with underlying exponential distributed

data with type I error α = 0.05. Under H0, the exponential distribution has parameter

λ = 1
µ

= 1. Thus, the upper tail test applies to the lower λa values. Again, the Tn enjoys

substantially higher power than the A–D statistic.
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Gamma Distribution
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Figure 3: Results of Monte Carlo power simulation with underlying gamma distributed

data, σ = 1 and type I error α = 0.05. Under H0, the gamma distribution has parameters

α = µ = 2.1 and β = 4.41. Again, the Tn enjoys substantially higher power than the A–D

statistic.

9


