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ABSTRACT

We propose a methodology for gaining statistical inference on censored samples, especially

during the actual conduct of the lifetest experiment, in order to reduce cost and time on test

while preserving reasonable levels of statistical power, and in at least one case, the method-

ology has increasing statistical power of a censored sample over that of a full sample. The

outcome of the methodology will produce design efficiencies in lifetime testing. The method

is distribution free for any fully specified continuous distribution under the null hypothesis,

and produces p-values that are exact. Transforming ordered lifetest data into iid uniformly

distributed data on (0,1), we use the Tn statistic, discussed in a companion paper (Glen and

Foote 2003), to gain inference on mean life of systems with resulting power increases of up

to 30% higher than that of the Anderson–Darling statistic. We investigate, with simulation,

the power of the method as r (the number of failures currently observed) increases to n. We

look specifically at null hypotheses from the exponential, normal, and gamma families of ran-

dom variables. We introduce an automated tool that allows for immediate implementation

of the new method using the probabilistic software package “A Probability Programming
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Language” running in the Maple environment. We provide conclusions that will give insight

on how to gain statistical inference with less time and materiel on test. We also show a

counter-intuitive result where in certain cases, censored samples produce higher power than

full samples. We investigate this counter-intuitive result more fully.

Keywords: Computational Algebra Systems, Exact Distributions, Conditional Order

Statistics, Censored Lifetesting.

1 INTRODUCTION AND LITERATURE REVIEW

In lifetesting applications, tests are designed to gain an understanding of the probabilis-

tic properties of a component or a system of components. Often, the costs of lifetests, in

both time and money, constrain the design of the experiment, limiting the number of items

placed on test and the length of the test. Many times, like in pharmaceutical drug testing,

the length of the experiment cannot be estimated accurately in advance, and often one is

faced with un-analysed, censored data in an ongoing experiment. For such cases we propose a

methodology that gives exact statistical inference on censored samples. Consider an existing

component, process, or drug with an all-parameters known lifetime reliability distribution

F (x). Should an improved component, process, or drug come along, both producers and

consumers would like to verify that the new item is better than the existing item, most often

by determining if its mean lifetime has improved (whether a decrease or an increase). In

the lifetesting of the new component, it would be highly desirable to stop the test when

enough evidence exists to support either claim. Such censoring, commonly called Type I

(stop after time t) or Type II (stop after r items fail), can produce statistical inference,

however, existing methods are not widely known, nor do they have remarkable statistical

power. We propose a methodology that will specifically rely on Type II censoring in the

design and conduct of the lifetest. If for example, one could afford a lifetest with n = 5

items to fail, a certain level of statistical power could be achieved if the test continued until

completion of n failures. Consider, however, an example where n = 25 items are placed on

test with r = 5 as the designated censoring value. Obviously the second test would conclude

more quickly, as the expected time on test would be the mean failure time of X(25:5), the
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fifth order statistic from a sample of 25 items, under the null hypothesis. Now consider a

slightly different example, where n = 25 items are placed on test. Experimenters notice

that after r = 3 failures, lifetimes seem to be substantially better than the original system.

After r = 6 failures, they are convinced, at least anecdotally, that the new system is better.

We propose a new methodology and a new test statistic that will allow for instantaneous

assessment at every failure, with exact p-values, from an exact distribution of the test statis-

tic. We rely on properties of conditional order statistic distributions to provide statistical

inference for censored data that has acceptable statistical power. We also show that for the

case of the Gamma distribution, given certain conditions, it is possible to achieve higher

power with a censored sample than it is for a full sample, a counter-intuitive result that

has warranted in depth investigation on our part. We use the test statistic Tn, presented

in a companion paper (Glen and Foote 2003), which has significantly more power than the

Anderson–Darling statistic, given changes in mean lifetime. The method we propose trans-

forms censored data, via two probability integral transforms (PITs) and conditional order

statistics, into an un-ordered, iid sample of uniformly distributed data on the open interval

(0,1), which we abbreviate U(0, 1). Furthermore, the test statistic Tn, designed as a test

of uniformity, enjoys significantly higher power than the A–D statistic when finding differ-

ences in the mean of the distribution of the item in question, thus higher power is generally

possible by combining the censored methodology with the use of the Tn statistic. The net

effect of combining the new statistic with the new methodology is an very strong advantage

in assessing censored data, to include the possibility of purposefully designing lifetests with

higher values of n so that the test can be censored early at a reasonable value of r, saving

time, money, and items that were destroyed during the test.

Rosenblatt (1952) presents theory that transforms joint conditional statistics to ordered,

uniformly distributed statistics for the censored case (we will instead transform censored data

to a complete un-ordered set of uniform data). David (1981) discusses the Markov nature

of conditional order statistics, and equates the conditional order statistic with the truncated

order statistic, a result that we will use as part of our method. O’Reilly and Stephens (1988)

use a Rosenblatt transform, then invert that transformed data to test ordered uniform data

(we will test un-ordered uniform data). Hegazy and Green (1975) present work on goodness-
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of-fit using expected values of order statistics with approximations used for critical values.

Balakrishnan, Ng, and Kannan (2002) present a test for exponentiality that is based on

progressively censored data, which uses a T statistic, however this statistic and this method

is unrelated to the Tn statistic and the sequentially censored data analysis that we use.

Michael and Schucany (1979) also present a transformation that takes censored data and

transforms it into ordered uniform data. Since Michael as well as Stephens (1974) also point

out that the A–D statistic is generally more powerful than the other well-known goodness-

of-fit statistics in the case when the mean has shifted, we will rely on Tn, which has even

higher power in detecting shifts in the mean than A–D, as shown our earlier, companion

paper (Glen and Foote, 2003).

2 TRANSFORMING THE CENSORED DATA INTO

IID U(0, 1)

Let the lifetime of an existing system (also that of the null hypothesis) be distributed by

the all-parameters known continuous rv X with CDF F (x). Let n items be on lifetest

and let the Type II censoring value be r. Recall that in a lifetest, failure data arrives in

ordered fashion. The ordered lifetime data x(i) have CDFs from their appropriate order

statistic FX(n:i)
(x(n:i)), i = 1, 2, . . . , r, (note X(n:i) is abbreviated X(i)). Now consider the

conditional order statistics of the lifetest, X(1), X(2)|X(1), . . . , X(r)|X(r−1). Theorem 2.7 from

David (1981, pg. 20) explains the Markov nature of these conditional order statistics. Thus

for our purposes the CDF of the ith order statistic, given the (i−1)th data point, F (x(i)|x(i−1)),

is that of the rv X(n−i+1:1) with support x(i−1) < x(i) < 1. David shows this is the first order

statistic from a sample size n−(i−1) from the parent distribution of X truncated on the left

at x(i−1). In other words, the distribution is independent of x(1), x(2), . . . , x(i−3), and x(i−2),

and is therefore memoryless in this regard. Since each of the conditional distributions can

be computed, conducting separate PITs on each data value, FX(i)|X(i−1)
(x(i)), i = 2, 3, . . . , r

will give a sample of r iid U(0, 1) random variables (see Rosenblatt 1952, pg. 470) to which

a uniformity test can be applied. As mentioned earlier, we use Tn, as it is better at finding

changes in µX than A–D in many cases (Glen and Foote, 2003). The statistic Tn has the
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distribution of the convolution of n iid U(0, 1) random variables. Therefore, the test statistic

we will use is as follows:

Tr =
r∑

i=1

FX(i)|X(i−1)
(x(i)) ,

where FX(1)|X(0)
is defined to be FX(1)

, and r is the size of the censored sample.

3 IMPLEMENTATION USING APPL

The theory of the statistic is straightforward, however the implementation is made practi-

cable only with automated probabilistic software. We implement the new method and new

statistic in APPL (Glen, et. al. 2001) for a number of reasons. The software allows us to use

exact distributions of the original data, the distributions of the conditional order statistics,

and the distribution of the Tn statistic so that exact p-values are attainable. Additionally,

the author has already calculated the PDFs of the sum of n U(0, 1) random variables from

n = 1 to n = 50, the last PDF requiring 91 pages of ASCII text to enumerate. APPL reads

these PDFs exactly and can thus compute the exact p-values. APPL allows for the use of

any continuous distribution (well-known distributions as well as ad hoc) to specify the null

hypothesis and conducts the necessary PITs for these distributions. We will demonstrate

power of the censored and full samples using Tn and A–D statistics with data from the Nor-

mal, Exponential, and Gamma prior distributions, however we are not limited to just these

distributions.

The methodology can be confusing to those not used to using conditional order statistics,

thus we present more clearly the algorithm for computing the test statistic.

• Specify the null distribution of the existing (old) system, F (x).

• During the lifetest experiment, note n and create the vector of r observed occurrences.

• Calculate z(i) = F (x(i)), i = 1, 2, . . . , r, which is ordered uniform (not iid).

• Calculate the unordered, iid U(0, 1) (under the null hypothesis) ui = FZ(i)|Z(i−1)
(z(i)), i =

1, 2, . . . , r. Note: we perform the PIT with F(x) and then conduct the conditional order

statistics PIT using the uniform conditional order statistic distributions. These two
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methods have been shown to be equivalent (Glen, et. al., 2001), but this method is

preferred as the conditional order statistics of the uniform distributions are much more

tractable than conditional order statistics using the parent distribution F . Also note,

we find the conditional order statistic using the truncation of the parent distribution

method outlined by David (1981).

• Sum the ui values to get the Tr statistic.

• Calculate the p-value with the appropriate tail of the Tr distribution.

The APPL code that enacts this algorithm to calculate the statistic is as follows:

# take the r censored values in ‘data’ and PIT them into the list ‘Zdata’

for i from 1 to r do

Zdata := [op(Zdata), CDF(Nulldist, data[i])];

od;

# sum the independent uniforms to for the statistic ‘t stat’ starting with the first failure ...

t stat:=CDF(OrderStat(U(0, 1), n, 1), Zdata[1]);

# ... then adding up the subsequent failures until r is reached.

if (r > 1) then

for i from 2 to r do

t stat := t stat + CDF(OrderStat(Truncate(U(0,1), evalf(Zdata[i-1]), 1),

n - (i - 1), 1), Zdata[i]);

od;

fi;

Tr distn := cat(‘T’,r);

# now return the statistic, the lower tail pvalue and the upper tail pvalue

# using the APPL command ‘CDF’

RETURN(t stat, CDF(Tr distn, t stat), 1 - CDF(Tr distn, t stat));

This APPL code is implemented in a new APPL procedure called CensoredT and its use

is illustrated in the example that follows. Assume there exists a medical treatment that has

an established time-to-healing record that is modeled by the Gamma(2.1, 4.41) distribution,
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where time is measured in years. A new treatment is developed and experimenters hope

to show an improvement (decrease) in healing time. The new treatment is administered to

n = 25 patients, and it is noted that the first five healing times are 0.40, 0.54, 0.66, 0.75, 0.84

years. Completion of the full experiment, under the null hypothesis, has an expected time

of E(X(25)) ≈ 4.52 years, the expected healing time of the slowest patient to heal. However,

the fifth patient’s expected healing time, under the null hypothesis, is E(X(5)) ≈ 1.21 years.

Since the observed time of the fifth patient’s healing was only 0.84 years, it would useful to

know if there is enough statistical evidence to stop the experiment, concluding that the new

treatment is better. The following APPL code will analyse this Type-II censored experiment:

> Old Treatment := GammaRV(2.1, 4.41);

> n := 25;

> data := [0.40, 0.54, 0.66, 0.75, 0.84];

> CensoredT(Old Treatment, data, n);

The procedure output is the test statistic, the lower tail p-value and the upper tail p-value.

In this case those values are 1.309743, 0.031999, 0.968001. Since we are interested in the

lower tail, we have a p-value of 0.031999, significant evidence that the new treatment is

better and we can consider terminating the experiment.

4 POWER SIMULATION RESULTS

In this section, we discuss the results of various power simulations to see the effect of in-

creasing r on the power of the test. We will use the Tn statistic and benchmark it against

the A–D statistic. In the case of the Exponential and Normal prior distributions, power

tests confirmed what was expected: as r increased, the power of the test increased, but

never exceeded the power of letting all n components fail. In the case of the Gamma prior

distribution, however, a non-intuitive result was observed. Power initially increased as r

increased, but then started to decrease after reaching a ‘maximum’ power. Even more un-

expectedly, in certain cases of parameter values, the maximum power of the mid-values of

r was actually higher that the power of the full sample. We have investigated some of this

unexpected phenomena and report on it below, as the implications of more power with lower
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r is very significant.

To implement this simulation, we wanted to set up the experiment so that, where pos-

sible, the underlying data had changing µ, but constant σ2. We fixed σ2 so that we could

see if we could spot a change in µ by itself. This ability to detect a change is µ is helpful to

lifetesters who have a new component that they would like to show superior to an existing

component with a well defined distribution and well established µ. In the case of Exponen-

tially distributed data, we could not fix σ2 as σ2 = µ2. We are able to fix σ2 for the Normal

and Gamma distributions. Table 1 shows the parameter values, as well as µ, and σ2 for the

Exponential, Normal, and Gamma distributions that were used in the power experiment.

Table 1: Distribution families, parameters, mean and variances for Monte Carlo Simulation

Normal Distribution, H0 : µ = 1, fixed σ = 1

µa -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

Exponential Distribution, H0 : λ = µ = 1

λa = 1
µa

0.4 .6 0.7 0.8 0.9 1.25 1.5 1.9 2.3 2.7

Gamma Distribution, H0 : α = µ = 2.1, β = 4.41 fixed σ = 1

αa = µa 1.1 1.3 1.5 1.7 1.9 2.3 2.5 2.7 2.9 3.1

βa 1.21 1.69 2.25 2.89 3.61 5.29 6.25 7.29 8.41 9.61

As we see in the Normal and Exponential cases (Figures 1 and 2), higher r values produced

higher power. Also, as can be seen in Figures 2 and 3, the Tr statistic produced higher power

than the A–D statistic except for the extremely high values of µ (though not shown in Figure

1, the same result was observed for the Normal distribution). This switch is interesting since

in the full sample experiments from the companion paper, The Tr appeared to always be

higher in power than the A–D statistic.

A very counter-intuitive phenomena occurs with the Gamma distribution. Highest power

for censored samples appears to come approximately r = 10 and then decrease as r ap-

proaches n. This result happened for the Tr and the A–D statistics. An enlargement of

Figure 3 is shown in Figure 4 that further shows that the power increases then decreases.

Figure 4 clearly shows that power starts out moderately at r = 5, then seems to achieve

a maximum at r = 10 (for both statistics) then clearly decreases by the time r = 20 and
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r = 25. (Note the conditional order statistic approach at r = n appears to be a different,

less powerful statistic than the full sample for Gamma prior.) Most striking was that, for

some values of µa lower than µ0 we have achieved higher power for the censored, r = 10,

case than we did for the full sample. As this is very counter-intuitive, we experimented

in detail the case where the Gamma parameter α = 1.7 and calculated the power for each

value of r = 1, 2, . . . , 25. The results of this in depth simulation are shown in Figure 5.

Here we clearly see both phenomena occur: 1) power increases until approximate r = 9,

then it decreases, and 2) for values for r = 6, 7, 8, 9, and 10 power for the censored sample

is at least has high or higher than power for the full sample. A note on the simulations: as

these Gamma prior results were so counter-intuitive that our colleagues have had difficulty

believing that a censored sample could possibly produce higher power than a full sample, we

have re-designed and re-run this experiment a number of times over the last year, achieving

similar results each time. For a copy of the simulation code, readers may contact the first

author.

5 APPLICATIONS AND IMPLICATIONS

This methodology has potential for significant advances in reliability engineering lifetesting,

pharmaceutical drug tests, or any sort of experiment where data comes naturally in ordered

form. The sequential testing ability allows for a test to be terminated early, hence ending a

dangerous experiment or giving early vindication allowing an effective therapy to go to mar-

ket earlier. In particular, if a new therapy or component is more effective than the old, early

failures may be remarkably small or large. This will result in acceptance and termination

without running until all cases have failed. The test can then be used to accept the new

component or medical treatment. Similarly, a few early failures can render a judgment and

the remaining patients can be switched to potentially better therapies. Other implications

of this research is as follows:

• Good statistical power for censored samples is possible for a wide ranges of experiments.

• Experiments can be designed for high n values, knowing that they will stop at a

predetermined, relatively small r value.
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• Experiments can be tracked real-time to see a pattern of p-values that indicates enough

inference has been gained.

• With a Gamma prior distribution, higher power is achieved in censored samples than

with full samples in some cases.

6 CONCLUSIONS

A new goodness of fit methodology has been developed and tested. Significant increases in

power on the order of 30% have been found compared to the standard Anderson - Darling

statistic. Also, relatively high power is achieved using the Tn statistic on censored samples,

allowing for lifetests to be terminated early. Finally, in at lease one special case, that of

a Gamma prior, a phenomena has been found, that at approximately r = 0.4 n, power is

greater that with a full sample.

7 TOPICS OF FURTHER RESEARCH

The cause of the phenomena revealed by validation testing of the slightly higher power in

one special case needs to be further investigated. A possible basis for the explanation lies

in the variance of successive, truncated order statistics, when data that originates from the

alternate hypothesis is passed through the PIT of the Gamma distribution based on the

null hypothesis. Somehow, the transformation of the data has a different characteristic than

when is it passed thru a PIT based on a null hypothesis with, say, an Exponential prior.

Also, further research is needed to investigate how high to set n and r in experimental design,

in order to gain possible advantages in lower time on test, lower cost, and fewer failed items

as a result of the experiment. For example, if a budget can afford 25 items failing, perhaps

it would be more effective to put 50 items on test, knowing ahead of time that the desired

increase on µ should be evident by about the r = 10th failure. Clearly a time savings and

component savings is evident here. Finally, one of our goals was to find the exact power

functions instead of using simulation of power. Due to the complexity of sending data from

one distribution thru the PIT of another, the resulting transformations were so complicated
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that we could only find the exact power function for the Exponential prior with r = 2.
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Figures

Normal Power Simulation, N = 25, r = 5 (5) 25
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Figure 1: Results of Monte Carlo power simulation with underlying normally distributed

data, σ = 1 and type I error α = 0.05. Under H0, µ = 0. Only the Tn results are shown.

Notice how well behaved the power functions are, in that higher r produced higher power.
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Exponential Power Simulation
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Figure 2: Results of Monte Carlo power simulation with underlying exponential distributed

data with type I error α = 0.05. Under H0, the exponential distribution has parameter

λ = 1
µ

= 1. Thus, the upper tail test applies to the lower λa values. Notice that, like

the Normal distribution, higher power is achieved for higher r values. Also notice how Tr

achieves higher power than A−D, except for low values of λa (high values of µa).
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Gamma Power Simulation
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Figure 3: Results of Monte Carlo power simulation with underlying Gamma distributed

data, σ = 1 and type I error α = 0.05. Under H0, the Gamma distribution has parameters

α = µ = 2.1 and β = 4.41. Here the counter-intuitive result of higher power comes from

r = 10 and then decreases as r > 10 for both the Tr and the A − D test statistics. This

phenomena is evident in the enlarged area shown in figure 4.
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Enlarged area of Gamma power
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Simulated in further 
detail, see Figure 5

Figure 4: This enlarged area shows clearly the case that Tr=10 has higher power than even

the full sample Tn=25. Thus we see the counter-intuitive result that under certain conditions

an experiment can actually achieve higher power with a censored sample than with a full

sample. Further investigation of this phenomenum at a higher resolution of r is found in

Figure 5.
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Figure 5: In an in depth experiment suggested from Figure 4, here is a plot of r versus power

for each value of r = 1 (1) 25 for µa < µ0. Note the two phenomena that 1) power increases

on r then decreases for both statistics and 2) the special cases at r = 6, 7, 8, 9, and 10 where

higher power is achieved in a censored sample than with a full sample.
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