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1 Introduction

Rohatgi’s well-known result (1976, page 141) for determining the distribution of the product

of two random variables is straightforward to derive, but difficult to implement. Let X and

Y be continuous random variables with joint PDF fX,Y (x, y). The PDF of V = XY is

fV (v) =
∫ ∞

−∞
fX,Y

(

x,
v

x

)

1

|x| dx .

The implementation of this result, however, is not straightforward for general X and Y .

Springer (1979) presents a chapter on finding distributions of products of random variables,

relying mostly on Laplace and Mellin transformation techniques, as implementation of the

earlier result is often too cumbersome. Difficulties occur as a result of both the myriad of

variations to the limits of integration and the propensity of the PDF of V to be defined in a

piece-wise manner. In this paper, we consider the cases when X and Y are independent and

may have probability density functions (PDFs) defined in a piece-wise fashion. We present

an algorithm that handles these difficulties and is implemented using the Maple computer

algebra system.

2 Theorem

A simple theorem is presented in this section which illustrates some of the issues associated

with a general algorithm for determining the PDF of the product of two independent random

variables. For simplicity, assume that the random variable X has support on the interval

(a, b) and the random variable Y has support on the interval (c, d). Also, the product space

of the two random variables is assumed to fall entirely in the first quadrant.

Theorem. Let X be a random variable of the continuous type with PDF f(x) which is

defined and positive on the interval (a, b), where 0 < a < b < ∞. Similarly, let Y be a

random variable of the continuous type with PDF g(y) which is defined and positive on the
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interval (c, d), where 0 < c < d <∞. The PDF of V = XY is

h(v) =



























∫ v/c
a g

(

v
x

)

f(x) 1
x
dx ac < v < ad

∫ v/c
v/d g

(

v
x

)

f(x) 1
x
dx ad < v < bc

∫ b
v/d g

(

v
x

)

f(x) 1
x
dx bc < v < bd

when ad < bc,

h(v) =











∫ v/c
a g

(

v
x

)

f(x) 1
x
dx ac < v < ad

∫ b
v/d g

(

v
x

)

f(x) 1
x
dx ad < v < bd

when ad = bc, and

h(v) =



























∫ v/c
a g

(

v
x

)

f(x) 1
x
dx ac < v < bc

∫ b
a g

(

v
x

)

f(x) 1
x
dx bc < v < ad

∫ b
v/d g

(

v
x

)

f(x) 1
x
dx ad < v < bd

when ad > bc.

Proof. Only the case of ad < bc is considered. The other cases are proven analogously. Using

the transformation technique (Hogg and Craig, 1995, page 173), the dummy transformation

Z = X and the transformation V = XY constitute a 1–1 mapping from A = {(x, y)|a <

x < b, c < y < d} to B = {(z, v)|a < z < b, cz < v < dz}. Let u denote the transformation
and w the inverse transformation. The transformation, inverse, and Jacobian are:

z = u1(x, y) = x x = w1(z, v) = z

v = u2(x, y) = xy y = w2(z, v) = v/z

J =

∣

∣

∣

∣

∣

∣

∣

1 0

−v/z2 1/z

∣

∣

∣

∣

∣

∣

∣

= 1/z.

The joint PDF of Z and V is

fZ,V (z, v) = f(w1(z, v))g(w2(z, v)) |J | (z, v) ∈ B,

or

fZ,V (z, v) = f(z)g(v/z)
1

z
(z, v) ∈ B.
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Integrating with respect to z over the appropriate intervals and replacing z with x in the

final result yields

h(v) =



























∫ v/c
a g

(

v
x

)

f(x) 1
x
dx ac < v < ad

∫ v/c
v/d g

(

v
x

)

f(x) 1
x
dx ad < v < bc

∫ b
v/d g

(

v
x

)

f(x) 1
x
dx bc < v < bd

,

as desired. 2

The geometry associated with the transformation is shown in Figures 1 and 2. Note that

the transformation maps Ai onto Bi for i = 1, 2, 3. Although the transformation technique

has been used to prove this theorem, the cdf technique could also have been used.

3 Implementation

The theorem in the previous section illustrates the importance of considering the magnitudes

of the product of the coordinates of the southeast and northwest corners of the product space

[i.e., (b, c) and (a, d)] when it lies entirely in the first quadrant. In order to apply the theorem

to any continuous random variables X and Y , three generalizations need to be addressed.

1. Analogous theorems must be written for the cases when the (a, b) by (c, d) rectangle

lies wholly in one of the other three quadrants.

2. Instead of having PDFs which are specified by a single standard function over their

entire support, the random variables X and Y may be defined in a piece-wise man-

ner over several intervals, forming many segments to the PDF (e.g., the triangular

distribution).

3. The cases when 0 and ±∞ belong to the endpoints of the intervals which constitute

the support of X and Y must be considered.

These generalizations result in 24 different cases that must be considered in order to correctly

compute the limits of integration of the theorem. The paragraphs below address these cases.

For quadrants II, III and IV, the limits of integration must be set appropriately based on

the geometry of the transformation.
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For random variables that are defined piece-wise over various intervals, let n be the

number of intervals for X and let m be the number of intervals for Y . There are mn

rectangular “product spaces” and the contribution of each to the value of the PDF of V =

XY must be computed. Furthermore, each “product space” can contribute differently to

the PDF of V on up to three segments of the support of V. As a result, the PDF of V

tends to become complicated very quickly, with an upper limit of 3mn segments to its PDF.

Furthermore, each of these segments fits into one of the 24 cases of the integration mentioned

above. For example, the product of two U(0, 1) random variables yields a random variable V

with only one segment (see Example 4.1). But with only a slight change, e.g., X ∼ U(1, 2)

and Y ∼ U(3, 4), yields a V = XY defined differently on three segments (see Example 4.2).

The case where the support of a random variable contains 0 (e.g., U(−1, 2)) poses special
difficulty since some of the rectangular product spaces will not lie wholly in any one quadrant

and cannot be handled by the previously developed techniques. Our solution to this difficulty

is to add 0 as one of the endpoints of the intervals for X and Y whenever this case occurs,

producing redundant segments, i.e., two segments on either side of zero with the same formula

for the PDF.

The algorithm consists of a set-up portion, followed by nested loops that determine

the contribution to the PDF of V = XY separately for each of the four quadrants. The

appendix contains the set-up portion and the algorithm associated with the first quadrant.

The algorithm for the other quadrants is similar.

The set-up phase begins by setting n and m to the number of intervals that form the

support of X and Y . Next, 0 is added as an interval delimiter for X and/or Y if the

random variable can assume both positive and negative values, and 0 is not already an

interval delimeter. Finally, the endpoints of the intervals which form the support of V are

determined by taking all products of the endpoints of the X intervals times the endpoints

of the Y intervals.

A nested set of loops follows that treats all pairings of X and Y intervals. As shown in

Figure 1, the coordinates (a, c) are assigned to the southwest corner of the current rectangle

of interest, and the coordinates (b, d) are assigned to the northeast corner of the current

rectangle of interest. A test to determine which quadrant contains the current rectangle
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is made at this point. Adding 0 as an interval delimiter in the set-up phase assures that

the current rectangle will be completely contained in just one of the quadrants. Once the

quadrant is determined, tests on c and d determine which integrals should be computed and

the appropriate limits of integration. Finally, the insertion of 0 sometimes leads to a PDF

for V with the same formula on both sides of 0. If this occurs, the program simplifies the

PDF by removing 0 as an interval endpoint if the function is defined at 0.

4 Examples

This section contains applications of using the Maple procedure Product, which is our im-

plementation of the algorithm described in the previous section.

Example 4.1 Consider the random variable X ∼ U(0, 1) and the random vari-

able Y ∼ U(0, 1). Find the distribution of V = XY .

This is a simple application of the algorithm. The following Maple code defines

the random variables X and Y and returns the PDF of their product. Note,

the procedure UniformRV returns the PDF in a Maple list-of-lists data structure

outlined in Glen, Leemis, and Drew (1997).

X := UniformRV(0, 1);

Y := UniformRV(0, 1);

V := Product(X, Y);

PDF(V);

The resulting PDF for V = XY is

h(v) = − ln v 0 < v < 1 ,

which is readily verified by hand.

Example 4.2 Consider the random variable X ∼ U(1, 2) and the random vari-

able Y ∼ U(3, 4). Find the distribution of V = XY .
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This is a straightforward application of the algorithm in that all segments of X

and Y are in the first quadrant. In this example, the PDF is more tedious to

calculate by hand. The program yields the following PDF for V = XY :

h(v) =



























ln v − ln 3 3 < v < 4

ln 4− ln 3 4 < v < 6

3 ln 2− ln v 6 < v < 8

.

Note that while the PDF of both X and Y are defined on single segments that

have positive interval limits, the PDF of V is defined on three segments.

Example 4.3 Consider the random variable X ∼ U(−1, 2) and the random
variable Y ∼ U(−3, 4). Find the PDF of V = XY. This example tests whether

the algorithm handles the case of 0 in the support of X and Y correctly. The

program yields the correct PDF for V :

h(v) =







































1
21
ln
(

− 6
v

)

−6 < v < −4
1
21
ln
(

24
v2

)

−4 < v < 0

1
21
ln
(

24
v2

)

0 < v < 3

1
21
ln
(

8
v

)

3 < v < 8

.

Maple returns a mathematically equivalent PDF with a slightly different func-

tional form for the second and third segments of V . The second segment, for

example, is given by Maple as 1
7
ln(2)− 1

21
ln(v) + 1

21
Iπ + + 1

21
ln(3)− 1

21
ln(−v),

which reduces to the above second segment given above since ln(−1) = Iπ, so

the imaginary portions cancel.

Example 4.4 Consider the random variable X ∼ Triangular(1, 2, 3) and the

random variable Y ∼ Triangular(1, 2, 4). Find the PDF of V = XY. This non-

uniform example illustrates the case of several rectangular product spaces. The

Maple code in this case is:

X := TriangularRV(1, 2, 3);

Y := TriangularRV(1, 2, 4);
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V := Product(X, Y);

PDF(V);

The resulting PDF for V has six segments:

h(v) =















































































































































−4v/3 + 2/3 ln v + 2v/3 ln v + 4/3 1 < v < 2

−8 + 14/3 ln 2 + 7v/3 ln 2 + 10v/3− 4 ln v
−5v/3 ln v 2 < v < 3

−4 + 14/3 ln 2 + 7v/3 ln 2 + 2v − 2 ln v
−v ln v − 2 ln 3− 2v/3 ln 3 3 < v < 4

44/3− 14 ln 2− 7v/3 ln 2− 8v/3− 2 ln 3
+22/3 ln v − 2v/3 ln 3 + 4v/3 ln v 4 < v < 6

8/3− 8 ln 2− 4v/3 ln 2− 2v/3 + 4/3 ln v
+v/3 ln v + 4 ln 3 + v/3 ln 3 6 < v < 8

−8 + 8 ln 2 + 2v/3 ln 2 + 2v/3 + 4 ln 3
−4 ln v + v/3 ln 3− v/3 ln v 8 < v < 12

.

Example 4.5 We give an illustration of the fact that the product of two log-

normal random variables has the lognormal distribution. Consider the random

variable X ∼ LogN(µ1, σ
2
1) and the random variable Y ∼ LogN(µ2, σ

2
2). Find

the PDF of V = XY. To illustrate, we set µ1 = µ2 = 0, σ
2
1 = 1 and σ

2
2 = 4. The

program yields the following PDF:

h(v) =
e− (ln v)2/10

v
√
10π

0 < v <∞ .

This can be identified as a LogN(µ = 0, σ2 = 5) random variable.

Example 4.6 Consider the random variable X ∼ N(0, 1) and the random vari-

able Y ∼ N(0, 1). Find the PDF of V = XY. This will test the case where the

support of X and Y include the endpoints ±∞.

The program yields the following PDF for V :

h(v) =















BesselK(0, v · signum(v))
π

−∞ < v < 0

BesselK(0, v · signum(v))
π

0 < v <∞
,
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which relies on Maple’s BesselK and signum functions. A plot of this function

is given in Figure 3.

Example 4.7 Devroye (1996) gives

X ← m+ [a+ (b− a)U1 −m] max{U2, U3}

as a one-line algorithm for generating a Triangular(a,m, b) variate, where U1,

U2, and U3 are independent and identically distributed U(0, 1) random variables

and the triangular distribution has minimum a, mode m, and maximum b. We

may now use this relationship to generate the PDF of a random variable with

the triangular distribution. Using the Maple procedure Maximum, also written

by Glen, which returns the PDF of the maximum of two independent random

variables and Transform for the linear transformations, we can determine the

PDF with the following Maple commands.

a := 1;

m := 2;

b := 3;

U1 := UniformRV(0, 1);

U2 := UniformRV(0, 1);

U3 := UniformRV(0, 1);

T1 := Transform(U1, [[x -> a + (b - a) * x - m],[- infinity, infinity]]);

T2 := Maximum(U2, U3);

T3 := Product(T1, T2);

X := Transform(T3, [[x -> m + x],[- infinity, infinity]]);

The resulting PDF for X is:

f(x) =











x− 1 1 < x < 2

3− x 2 < v < 3
.

Example 4.8 Consider the independent random variables U1 ∼ U(0, 1) and

U2 ∼ U(0, 1). The Box–Muller algorithm for generating a single standard normal
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deviate V can be coded in one line (Devroye, 1996) as

V ←
√

−2 lnU1 cos(2πU2),

where U1 and U2 are independent random numbers. Using the Transform (Glen,

Leemis, and Drew, 1997) and Product procedures together, one can determine

the PDF of V . Due to the principle inverse difficulty with trigonometric functions,

however, the transformation must be rewritten as

V ←
√

−2 lnU1 cos(πU2)

before using Transform.

The program yields the following PDF for V :

h(v) =























v

π

∫ 0

−1

e− v2/(2x2)

√
1− x2 x2

dx −∞ < v < 0

v

π

∫ 1

0

e− v2/(2x2)

√
1− x2 x2

dx 0 < v <∞
.

While this form in not easily recognizable as the PDF for the normal distribution,

it is mathematically equivalent to the more standard

h(v) =
1√
2π

e−v2/2 −∞ < v <∞.

We anticipate that future generations of computer algebra systems will be able

to simplify these integrals.

As a final example, the Product procedure can be used in various types of statistical

inference, as illustrated here in hypothesis testing.

Example 4.9 (Hogg and Craig, 1995, page 287) Let X1 and X2 be iid observa-

tions drawn from a population with PDF

f(x) = θxθ−1 0 < x < 1,

where θ > 0. Test H0: θ = 1 versus H1: θ > 1 using the test statistic X1X2

and the critical region C = {(X1, X2)|X1X2 ≥ 3/4}. Find the significance level
α and power function for the test.
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The APPL code to compute the power function is

n := 2;

crit := 3 / 4;

assume(theta > 0);

X := [[x -> theta * x ^ (theta - 1)], [0, 1], ["Continuous", "PDF"]];

T := ProductIID(X, n);

power := SF(T, crit);

which yields

Pr(rejecting H0|θ) = 1− (3/4)θ + θ(3/4)θ ln(3/4).

The fact that the population distribution is non-standard indicates that X must

be defined using the list-of-three lists data structure shown above. The assume

statment defines the parameter space. The ProductIID procedure simply makes

repeated calls to Product. Finally, the SF procedure returns the survivor func-

tion, which is the complement of the CDF. To compute the significance level of

the test, the additional Maple statement

subs(theta = 1, power);

is required, yielding α = 1/4 + 3/4 ln(3/4) ∼= 0.0342. Maple’s floating point

evaluator evalf can be used to compute the floating point representation of α.

To plot the power function requires the additional statement

plot(power, theta = 0 .. 4);

Obviously, this example can be generalized for different sample sizes, population

distributions, and critical values with only minor modification.

5 Conclusion

An algorithm for calculating the PDF of the product of two independent random variables X

and Y (which may be defined in a piece-wise manner) has been developed and implemented.
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The APPL procedure Product is one of many procedures capable of automating compli-

cated probability calculations associated with random variables (Glen, Evans, and Leemis,

2001). Potential application areas for calculations of this type occur in all areas of applied

probability and statistics.
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xy = ac
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Figure 1: The support of X and Y when ad < bc.
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Figure 2: The mapping of Z = X and V = XY when ad < bc.
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Figure 3: The PDF of V = XY for X ∼ N(0, 1) and Y ∼ N(0, 1).
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Procedure Product

Input: The pdf of X, f(x), and the pdf of Y , g(y), where X and Y are independent,

continuous random variables. The pdf’s are in the list-of-lists format; e.g.,

[fX1, fX2,[‘Continuous‘, ‘PDF‘]], as described in Glen, Leemis, and Drew (1997).

Output: The pdf of V = X · Y , h(v), in the list-of-lists format. The pdf is determined
by the general result

h(v) =
∫ ∞

−∞
f(x) · g

(

v

x

)

1

|x|dx.

X? ← fX2 (from the list-of-lists format), n← ‖X?‖
Y ? ← fY2,m← ‖Y ?‖
f ← fX1

g ← fY1

V ? ← [ ], (the empty list)

h← [ ]

# Insert 0 into X? if necessary

If (X?
1 < 0 and X

?
n > 0 and 0 /∈ X?) then

For i← 1 to n

If (X?
i < 0 and X

?
i+1 > 0) then

Insert 0 between positions X?
i and X

?
i+1

Insert fi at position fi+1

n← n+ 1

break

# Insert 0 into Y ? if necessary

If (Y ?
1 < 0 and Y ?

m > 0 and 0 /∈ Y ?) then

For i← 1 to m

If (Y ?
i < 0 and Y ?

i+1 > 0) then

Insert 0 between positions Y ?
i and Y

?
i+1

Insert gi at position gi+1

m← m+ 1

break
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# Set up the support list V ?

For i← 1 to n

For j ← 1 to m

V ? ← V ? ⋃
(

X?
i · Y ?

j

)

l ← ‖V ?‖
For i← 1 to l − 1

hi ← 0

# Integrate for each piecewise segment of X times each piecewise segment of Y

For i← 1 to n− 1
For j ← 1 to m− 1

a← X?
i

b← X?
i+1

c← Y ?
j

d← Y ?
j+1

If (a ≥ 0 and c ≥ 0) then
# The two segments transform into the 1st Quadrant

f1← ∫ b
a fi(x) · gj( vx) · 1

x
dx

If (d <∞) then f2← ∫ b
v/d fi(x) · gj( vx) · 1

x
dx

If (c > 0) then f3← ∫ v/c
a fi(x) · gj( vx) · 1

x
dx

If (c > 0 and d <∞ and ad < bc) then f4← ∫ v/c
v/d fi(x) · gj( vx) · 1

x
dx

#1st Quad, Scenario A

If (c = 0 and d =∞) then
For ii← 1 to l − 1
If (V ?

ii ≥ 0 and V ?
ii+1 ≤ ∞) then

hii ← hii + f1

#1st Quad, Scenario B

If (c = 0 and d <∞) then
For ii← 1 to l − 1
If (V ?

ii ≥ 0 and V ?
ii+1 ≤ ad) then
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hii ← hii + f1

If (V ?
ii ≥ ad and V ?

ii+1 ≤ bd) then

hii ← hii + f2

#1st Quad, Scenario C

If (c > 0 and d =∞) then
For ii← 1 to l − 1
If (V ?

ii ≥ bc and V ?
ii+1 ≤ ∞) then

hii ← hii + f1

If (V ?
ii ≥ ac and V ?

ii+1 ≤ bc) then

hii ← hii + f3

#1st Quad, Scenario D

If (c > 0 and d <∞) then
If (ad < bc) then

#1st Case

For ii← 1 to l − 1
If (V ?

ii ≥ ac and V ?
ii+1 ≤ ad) then

hii ← hii + f3

If (V ?
ii ≥ ad and V ?

ii+1 ≤ bc) then

hii ← hii + f4

If (V ?
ii ≥ bc and V ?

ii+1 ≤ bd) then

hii ← hii + f2

If (ad = bc) then

#2nd Case

For ii← 1 to l − 1
If (V ?

ii ≥ ac and V ?
ii+1 ≤ ad) then

hii ← hii + f3

If (V ?
ii ≥ bc and V ?

ii+1 ≤ bd) then

hii ← hii + f2
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If (ad > bc) then

#3rd Case

For ii← 1 to l − 1
If (V ?

ii ≥ ac and V ?
ii+1 ≤ bc) then

hii ← hii + f3

If (V ?
ii ≥ bc and V ?

ii+1 ≤ ad) then

hii ← hii + f1

If (V ?
ii ≥ ad and V ?

ii+1 ≤ bd) then

hii ← hii + f2

# Repeat the algorithm for quadrants II, III, and IV.

# Remove any reduncancies in h due to 0 in the support list.

# Make a new list of lists for V

fV1 ← h

fV2 ← V ?

fV3 ← [‘Continuous‘, ‘PDF ‘]

Return(fV )
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