3D-Image Calibration — Mathematica Documentation

AT, TR ity oy

puite =
. B U !
1 Y L

W 8 0 9. .ore

Figure 1: Real World Coordinate Axes at the Army-Navy Game

The goal of this series of papers is to analyze images, like the one shown in Figure 1,
taken with digital cameras at sporting events and in laboratory settings. We are interested
in recognizable features in such images — for example, a football or a particular point on
the goal posts at one end of the field. We need to work with two coordinate systems.

e A three-dimensional real world coordinate system. In Figure 1 we use the center of
the field as the origin. The z-axis runs along the length of the field midway between
the sidelines and the y-axis runs along the 50 yard line. The z-axis represents height
above the field. Since football fields are crowned, we use the height around the goal
lines and sidelines as the zero point on the z-axis. Thus, the origin is actually a bit
below the playing surface at the center of the field. We use yards as units. We use
(x,y, z) to denote real world coordinates.

e A two-dimensional image coordinate system. We use pixels as units. The origin is in
the center of the image. The x-axis runs horizontally and the y-axis runs vertically.
We use (s,t) to denote image coordinates.

The key to analyzing the three-dimensional real world from two-dimensional digital
images is the ability to convert back-and-forth between three-dimensional real world co-
ordinates and image coordinates. The key to this conversion is a set of calibration data,
or the camera vectors, that describe how each image was taken. Basically there are four
things we need to know about how a digital image was taken.

e Where the camera was. More specifically, we need to know the three-dimensional
real world coordinates of the optical center of the camera lens.

e The direction in which the camera was pointing.

e A magnification factor based the focal length of the lens, the size of the camera
sensor, and the dimensions (in pixels) of the image.

e How the camera was rotated about the line that is perpendicular to the plane of the
camera’s sensor and runs through the optical center of the lens.

This involves seven real parameters. The first three parameters describe the location of
the optical center of the lens. The next two parameters describe the direction in which the
camera was pointing. The next parameter is determined by the focal length of the lens, the
size of the camera sensor, and the dimensions (in pixels) of the image. The final parameter
is determined by how the camera was rotated about the line that is perpendicular to the
plane of the camera’s sensor and runs through the optical center of the lens. These seven
parameters determine four vectors that are used for converting back-and-forth between
three-dimensional real world coordinates and two-dimensional pixel coordinates on the
image.

A vector ¢ that describes in real world coordinates the location of the optical center
of the camera lens.

A vector p' whose direction indicates the direction in which the camera was pointing
and whose length is determined by the focal length of the lens, the dimensions of the
camera’s sensor, and the dimensions (in pixels) of the image.

A unit vector @ that points in the positive z-direction of the image on the camera
sensor. This vector is perpendicular to p.

A unit vector ¥ that points in the positive y-direction of the image on the camera
sensor. This vector is perpendicular to p and 4.

We use these vectors to convert back-and-forth between the three-dimensional real
world coordinates of a point (feature) and its two-dimensional image coordinates. The
translation from real world coordinates to image coordinates is given by

o (U
proma—@—(w)((DD

s = (IPY G_g_iy.a
(Wﬂ)« q—h)- 1)

= () agohy s
(Wﬂ)« q—h)-0)

The mathematics and geometry behind this flurry of formulas is discussed in the paper
The Mathematics of Working with Digital 3D Imagery.

In order to determine the camera vectors for a particular image we need data — the
real world coordinates and the image coordinates (in pixels) of each feature in a set of
recognizable features that appear in the digital image. Collecting this data is done using
the program 3D-Image-Marker. The mechanics of collecting this data is described in
the documentation for that program. The basic idea is to choose a set of recognizable
features whose real-world coordinates are known — for example, in Figure 1 we would use
points where the yard lines meet the sidelines. As one example, the point toward the
bottom left of this image where the goal line meets the left sideline has three-dimensional
real world coordinates (50, —26.6667,0). (The width of a football field is 160 feet.) The
user inputs the three-dimensional real world coordinates for each feature and then clicks
on that feature in the image to determine its image coordinates. The data consists of a set
of five coordinates for each of n features:

=
Il

{(x1,91, 21, 51, t1), (@2, Y2, 22, 52, t2), . . . (T Yn, ZmSm, tn) }

where the first three coordinates are real world coordinates and the last two are image
coordinates.

The process of determining the camera vectors from this data is called calibration.
You should read this documentation with the Mathematica notebook ANT6.nb open on
your computer. We will calibrate the image shown in Figure 2. This is identical to Figure
1 except that the original image did not have the axes superimposed.

Cell 1 of the Mathematica notebook ANT6.nb contains calibration data made for this
image using the program 3D-Image-Marker. This cell also specifies the width (in pixels)
of the digital image. The user normally pastes data collected using 3D-Image-Marker
into this cell, changes the value of the variable imageWidth, and then executes the cell.
You can just execute the cell since that data and the value of imageWidth are already in
the cell. After executing this cell, you should see a plot showing the image coordinates of
these data points.

o

VW @ @ @ o

Figure 2: A Photograph Taken at the Army-Navy Game

Cell 2 defines the procedures that convert from real world coordinates to image co-
ordinates based on possible values for the calibration data. You should just execute this
cell.

We measure the goodness-of-fit for the possible values for calibration data in the usual
way. For each data point @; = (x4, v, 2, si, i), = 1,2,...n we compute the predicted
image coordinates 5; and ¢;. Then we find the sum of the squared errors

&= Z((EZ - Si)2 + (ti — ti)Q).
1=1

We eventually calibrate the image by minimizing &.
The first step in this process is finding rough estimates for the camera vectors. This
process begins in Cell 3 of the Mathematica notebook ANT6.nb.

e The vector ¢, representing the location of the optical center of the lens is estimated
based on intuitive knowledge of where the camera was. This can be a fairly rough

estimate. You can also get a rough estimate of ¢ by looking at the image. Normally
the user enters this estimate by changing the values of the variables initialQX,
initialQY, and initialQZ but this notebook already contains estimates.

e The direction of the vector p’ that is perpendicular to the sensor and passes through
the optical center of the lens is estimated based on an estimate of the real world
coordinates of the point in the center of the image. These coordinates are called
targetX, targetY, and targetZ in the Mathematica notebook. Normally the user
enters values for targetX, targetY, and targetZ. but this notebook already con-
tains estimates. The length of the vector p is estimated based on the focal length
of the lens and the width (in pixels) of the image. The width of the image in pixels
was already specified in Cell 1. In this cell the user normally enters an estimate for
the (35mm equivalent) focal length of the lens as the value of the variable lensFo-
calLength. This value is already in this notebook. So all you have to do is execute
this cell.

e So far we have estimated six of the seven parameters. The seventh parameter, 6,
representing how the camera was rotated about the line that is perpendicular to the
plane of the camera’s sensor and runs through the optical center of the lens, is more
difficult to estimate. Cell 3 produces a graph of the sum of squared errors, £, as a
function of this parameter. The user should note the rough value of the parameter 6
that minimizes this function. In our example the plot looks like Figure 3 and we see
that the minimum value of the SSE occurs at roughly 6 ~ 0.2. The user then uses
this value as the value of the variable initialTheta in Cell 4

15x10% 1

Lx10® |

sxl07

Figure 3: SSE as a Function of ¢

e Cell 4 calculates the values of the corresponding camera vectors and plots the image
coordinates of the data points (in blue) and the predicted image coordinates (in red)
for the same data points based on the estimated camera vectors. This plot gives you

a rough idea of how good the rough estimates are. Remember we only need rough
estimates.

Now we are ready to estimate the camera vectors.

e Cell 5 uses the Mathematica procedure FindMinimum to find values of the seven
parameters that minimize £. It then computes the corresponding camera vectors
and draws a graph showing the image coordinates of the data points (in blue) and
the predicted image coordinates (in red) for the same data points based on the new
camera vectors. It also prints a table showing the actual image coordinates of the
data points and the predicted image coordinates.

e Cell 6 generates an xml file with the camera vectors for use in the program 3D-
Analysis. You will need to edit the first line of this cell to save the file in a convenient
place. This file is not perfect. The user needs to open it in a text editor and do some
editing. The first step is to remove all the quote marks by doing a find-and-replace
replacing quote marks by the empty string. Then the user needs to replace single
quote marks by double quote marks. Be sure to save the edited xml file.

e Cell 7 generates a text file with the camera vectors for use in the spreadsheet 2D-
Analysis. You will need to edit the first line of this cell to save the file in a convenient
place. This file is not perfect. The user needs to open it in a text editor and do some
editing. Remove all the quote marks by doing a find-and-replace replacing quote
marks by the empty string. Be sure to save the edited txt file.

In summary, here is the user input to this process.

e The calibration data. The user produces this using the program 3D Image-Marker
and cuts-and-pastes it into the first cell of this notebook.

e The width of the image in pixels. The user enters this in the first cell of the notebook
as the value of the variable ImageWidth.

e Estimates for the coordinates initialQX, initialQY, and initialQZ that describe
in real world coordinates the location of the optical center of the lens.

e Estimates for the real world coordinates targetX, targetY, and targetZ of the
point at the center of the image. If the camera was pointing generally toward the
origin of the real world coordinates then these are all zero.

e The (35mm equivalent) focal length of the lens. This is the value of the variable
lensFocalLength.

e An estimate for the parameter 6 that represents how the camera was rotated about
the line that is perpendicular to the plane of the camera’s sensor and runs through
the optical center of the lens. This estimate is based on a graph of the function £ for
0 < 6 < 2x. This is the value of the variable initialTheta.

e Finally, the user must edit the first line of Cell 6 or Cell 7 to save the xml file in a
convenient place and edit the xml file using a text editor as described above.

