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Abstract

In coordinate percolation on an positive orthant of the n-dimensional lattice Zn with

a given threshold value, 1 + t, random variables ai(k) are uniform on [0, 1] to each

pair of integers (i, k) with 1 ≤ i ≤ n and k ≥ 0. A point v = (v1, . . . , vn) is open if

a1(v1) + a2(v2) + · · ·+ an(vn) < 1 + t and closed otherwise. What is the probability,

θ(t), that the origin is in an infinite open cluster? Through the examination of several

equivalent processes in the case where n = 2, an explicit expression is obtained for

this probability:

θ(t) =


0 t ≤ 0

1+3ϕ
5
t2−ϕ + 4−3ϕ

5
t1+ϕ 0 < t < 1

1 t ≥ 1

where ϕ is the golden ratio, (1 +
√

5)/2.

In addition, we present some initial results toward the more general situation,

where n > 2. In particular, we have obtained one algorithm to determine whether

any given choice of ai(j) for all 1 ≤ i ≤ n and k ≥ 0 has an infinite open path

containing the origin.
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Chapter 1

Introduction

What is percolation?

Consider a pumice stone (or some other porous medium) immersed in water (or

another fluid). In the pumice stone, there are pockets that the water would like to

fill, but there are also walls that block the flow of water. Does the water reach the

center of the stone?

We can model a pumice stone with a graph where the pockets are vertices and

Figure 1.1: An illustration of the main question of percolation.
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edges exist between adjacent pockets. This assumes that all pumice stones have

basically the same structure, the only difference being whether or not the edges are

blocked by a wall. In a specific stone, we also decide whether each edge is blocked

(closed) or available to water (open). For the center of the stone to get wet when

immersed in water, there must be a path containing from the vertex at the center

of the graph to a vertex on the outside edge of the stone that only uses open edges.

Since it is usually the case that the size of the stone is large compared to the size

of the pockets, the model frequently model the stone with an infinite graph and

determines whether there is an infinite open path beginning at the designated center

vertex.

This is the basic setup for a percolation model. It includes a graph and a proba-

bility function on the edge set of the graph to determine which edges are open and

which are closed. We may also place a probability function on the vertex set of the

graph; in this case, an open path is a path containing only open vertices. When the

probability function is on the edge set, this is called bond percolation; when it is

on the vertex set, it is called site percolation.

The most frequent model of percolation uses the infinite integer lattice, in two or

more dimensions. This graph has vertices at every ordered n-tuple of integers, and

edges where the n-tuples differ in only one coordinate, and the differing coordinate

differs by exactly 1. One model on this graph seen most frequently is independent

site percolation (or independent bond percolation, when the probability func-

tion is on the edges), where each vertex is open independently with probability p,

for a fixed p, with 0 < p < 1. In this Introduction, we will consider independent

2



Figure 1.2: Collision-based coordinate percolation: Black vertices are closed
and white vertices are open. Axes are labelled with the discrete random variable
associated to that coordinate, chosen uniformly at random from {A,B,C}.

percolation, focusing on what is known and what is unknown, so we can contrast it

with the model studied in the remainder of the document, a form of site percolation

called coordinate percolation.

The idea of coordinate percolation is that vertices are open and closed based

on random variables associated with the coordinates of the vertex, introducing a

dependency between vertices. One form of coordinate percolation, introduced in [5]

and studied in [1], [4], [6], [7], [8], and [10], has identical discrete random variables

associated to each coordinate. A vertex is open in this model if the variables in

different coordinates don’t match (see Figure 1.2).

In this document, we focus on comparison-based coordinate percolation, where

each coordinate receives a continuous random variable and a vertex is open if the

sum of the variables in each coordinate do not exceed a given threshold value. For

an example, see Figure 1.3. More detail on the definitions will be given in Chapter 2.

3



Figure 1.3: Comparison-based coordinate percolation: Black vertices are
closed and white vertices are open. Axes are labelled with the continuous random
variable associated to that coordinate, chosen uniformly at random from [0, 1]. The
threshold value is 1.

1.1 Independent Percolation

As mentioned above, in independent site percolation each vertex is open indepen-

dently with probability p where 0 < p < 1. There are many applications of this

model.

Sensor grids

To protect an estate, a very dense grid of sensors is laid down around it. Each sensor

has a probability p of being out of service at any given time. What is the probability

that an intruder can get across the grid?
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City Networks

To create a network in New York, fiber optic cable is laid down along all the streets.

Each cable has the same number of different time slots which may be used. Each of

the time slots on each cable is filled with probability 1 − p. To transmit a message

between two places, there must be a single slot that is open at every edge along a

path between the places. What is the probability that such a path can be found?

Chemistry

In a phase transition, molecules form bonds with nearby molecules with a probability

p, where p depends on the temperature. (A lower temperature corresponds to a higher

probability.) How large a structure will be formed at a given temperature?

Storm Drains

A large grid of pipes is laid out to catch and contain rainwater. Unfortunately, silt

and debris tend to catch in the intersections of the pipes, so each intersection has a

probability 1− p of being blocked. How much water can be held in this system?

To answer the question of sensor grids, the network is modelled as independent

site percolation, and we want to find the probability, θ(p), that there is an open path

between the estate and the edge of the sensor grid. For the city network, if there

were only one time slot this would be a straightforward application of independent

bond percolation, so the probability of a single slot being open would be a different

probability function θbond(p). Since there are multiple slots available, we can view

this as n simultaneous bond percolation processes, so the probability of one open

5



slot would be 1− (1− θ(p))n.

The chemistry and storm drain applications depend on a different value, called

the cluster size. The cluster at a vertex v is the set of vertices which may be reached

by open paths from that vertex. The function χ(p) = E[|C|] is the expected size of

the cluster C, where C contains the distinguished vertex. The chemistry example

uses independent bond percolation while the storm drains example, as phrased, uses

independent site percolation. The function χ(p) would be different in each of these

cases.

A more realistic model of the storm drain system would allow both the intersec-

tions and the pipes to be blocked, making a mixed model for percolation. Since the

functions θ(p) and χ(p) are unknown in both site and bond percolation, attempting

to work with this model may be ambitious.

1.2 The Critical Phenomenon

Consider the sensor grid example. If the probability of failure, p, of any given sensor

is small, then it is extremely likely that there will not be a path of failed sensors

across the grid. However, if the probability of failure is high, most of the sensors

will be out and an intruder only has to avoid these few in order to make it across.

In fact, most forms of percolation exhibit what is called a critical phenomenon

or phase transition. This means that there is a probability pc, called the critical

probability, so that θ(p) = 0 if p < pc and θ(p) > 0 if p > pc. All of the examples in

Section 1.1 use the two dimensional lattice Z2, but it is easy to see why percolation
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may use other graphs, notably the three dimensional lattice Z3. Mathematicians

have generalized to the finite dimensional lattice Zn, but much is still unknown

regarding most of the questions in percolation for any n. For example, the critical

probability, pc, is 1
2

for independent bond percolation on Z2, but is unknown for higher

dimensions and the critical probability is unknown for independent site percolation

in all dimensions, although bounds are known for these values [9].

Since the critical probability is crucial to the understanding of percolation, some

effort has been made to understand the percolation probability, θ(t) and the cluster

size χ(p) for p near pc. One question which is not yet completely answered is the

value of θ(pc). Other than at pc, θ(p) is known to be a continuous function, and it is

known to be continuous at pc when n = 2 and n ≥ 19, but the question is still open

in the remaining dimensions. To understand the behavior near pc, we introduce the

critical exponents

γ = − lim
p→p−c

lnχ(p)

ln |p− pc|
,

β = lim
p→p+

c

ln θ(p)

ln |p− pc|
, and

δ−1 = − lim
n→∞

ln Pr(|C| ≥ n)

lnn
.

In general, it is not known whether or not these exist. We interpret the critical expo-

nents as the limiting functions of the expected cluster size, percolation probability,

and actual cluster size. In other words, as p → p−c , the expected cluster size χ(p)

looks like (pc−p)−γ. As p→ p+
c , the percolation probability θ(t) looks like (p−pc)

β.
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At pc, the probability that the cluster containing the origin has n vertices looks like

n−1/δ. In independent percolation, the values of all of these critical exponents are

unknown.

1.3 Coordinate Percolation

The remainder of this document focuses on coordinate percolation. Coordinate per-

colation arises in scheduling problems, as seen in [2], but the following application

to resource allotment is another motivation for studying this problem.

A computer needs to run n different programs. For n = 3, these programs might

be something like the operating system, the web browser, and matlab. Each of these

programs has an infinite list of upgrades. Unfortunately, each of these upgrades must

be installed consecutively. Although the amount of system resources each upgrade

uses is random, it is known in advance. Can all of the upgrades be installed without

going over the amount of resources the computer has?

In this model, the amount of resources each upgrade uses is a random variable

with uniform distribution on the interval [0, 1]. This is unrealistic. However, the

approach generalizes to random variables with uniform distribution on any interval,

as long as the size of the interval is the same for all programs. This generalization is

explored in Chapter 7. In the case where we have a random variable with uniform

distribution on the interval [0, 1], this can be thought of as percentage of resources of

an average system. Each system is different, so the total amount of system resources

varies and is given as the threshold. The threshold can be thought of as the amount of
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resources available in comparison to the average system. If the amount of resources all

of the programs together are trying to use exceeds the amount of resources available

on the system, the system will not run.

This is a percolation process because we may define a vertex (i, j, k) to be open if

the total resources used by the ith upgrade of the operating system, the jth upgrade

of the web browser and the kth upgrade of matlab does not cause the system to seize.

The probability of being able to install all the upgrades may be changed if we are

allowed to downgrade, returning to a usage of system resources which has already

been passed; this possibility is explored in Section 2.3. It will certainly change

with the system (the threshold) and with the number of programs to be run (the

dimension). One thing to notice with this model is that if the amount of resources on

the system isn’t as much as that on the average system, there is no chance of being

able to perform all the upgrades, since at least one of them will use more resources

than this system has. However, it is unclear from this problem if the average system

may perform all the upgrades, or even if a system with less than n times the resources

of the average system may perform all the upgrades.

1.4 This Document

Throughout the remainder of the document, the percolation model will be coor-

dinate percolation on the n-dimensional integer lattice unless otherwise specified.

Chapter 2 focuses on the problem set-up, and discusses definitions. We also discuss

the properties of this model, including the existence of a critical threshold and a

9



forbidden configuration. Chapter 3 outlines an algorithmic approach to computing

the percolation probability, θ(t). This leads to an algorithm to answer the decision

question, “Given a configuration, does it percolate?” in any dimension. The algo-

rithm is analyzed and adapted in the case of n = 2 to yield an integral equation.

Chapter 4 outlines another approach, which seeks to reduce the configuration space

to something finite. We use the existence of random variables with value less than

t to truncate the infinite sequences of random variables. This approach yields an

expression for θ(t) in terms of a combinatorial object known as a worm. We explore

worms and their relationship to coordinate percolation in Chapter 5. Chapter 6 uses

an approach which combines aspects of algorithms and a reduction in the size of the

sample space. This approach uses another adaptation of the algorithm introduced

in Chapter 3, but in this adaptation only the order of the random variables is ob-

served. This leads to an explicit formula for the probability θ(t), which is shown in

Section 6.3. We conclude, in Chapter 7, by exploring various generalizations.s
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Chapter 2

Coordinate Percolation

In this Chapter the formal language describing coordinate percolation is developed.

Section 2.1 begins the definitions necessary for the remainder of the document. Sec-

tion 2.2 formally defines what a configuration is and what it means for such a con-

figuration to percolate, as well as setting up the probabilistic background for the

problem. Section 2.3 lays out some immediate properties of this percolation model.

2.1 Definitions

The basis of percolation is the notion of some vertices in a graph being open and

the rest of the vertices being closed. In independent percolation, whether a vertex

is open or closed does not depend upon the state of any of the remaining vertices.

In coordinate percolation, the state of a vertex depends on variables associated with

the coordinates of that vertex. While independent percolation can be modeled on

any infinite graph, coordinate percolation requires some notion of coordinates. This

11



document focuses on coordinate percolation in the the nonnegative quadrant of the

integer lattice Z2, which I will denote by N2. There will be some excursions into

higher dimensional integer lattices. Formally, define the graph N2 = (V (N2), E(N2))

where

V (N2) = {(i, j)|i ≥ 0, j ≥ 0 are integers}

E(N2) = {{(i, j), (i+1, j)}, {(i, j), (i, j+1)}|(i, j) ∈ V (N2)}

For the general graph Nn = (V (Nn), E(Nn)) we let

V (Nn) = {(i1, i2, . . . , in) | ij ≥ 0, 1 ≤ j ≤ n are integers}

E(Nn) = { {(i1, i2, . . . , in), (i1, . . . , ij−1, ij+1, ij+1, . . . , in)}

| (i1, i2, . . . , in) ∈ V (Nn), 1 ≤ j ≤ n}.

We will denote the origin (0, 0, . . . , 0) in Nn as 0n.

A path ϕ in Nn is a sequence ϕ(0), ϕ(1), . . . , ϕ(k) where ϕ(i) ∈ V (N2) for 0 ≤

i ≤ k, ϕ(i) 6= ϕ(j) whenever i 6= j and {ϕ(i), ϕ(i+1)} ∈ E(Nn) for 0 ≤ i < k.

We say the length l(ϕ) of the path ϕ is equal to k. In other words, the length of

the path is one less than the length of the corresponding sequence of vertices. It

is sometimes useful to look at the coordinates of the vertices in a path. We define

12



functions ϕj : {0, 1, . . . , l(ϕ)} → Z for 1 ≤ j ≤ n by

ϕj(i) = xj ⇔ ϕ(i) = (x1, x2, . . . , xj, . . . , xn).

For a vertex v ∈ V (Nn) we will sometimes abuse notation and say v ∈ Nn or use Nn

to denote the edge set of this graph.

If we already have a definition of open and closed vertices, an open path is

a path containing only open vertices. An open cluster is a maximal collection of

open vertices connected by open paths. An infinite open cluster is an open cluster

containing a (countably) infinite number of vertices.

2.2 Problem Statement

This document focuses on one kind of coordinate percolation. We have a collection

of independent random variables ai(j) for each integer pair with 1 ≤ i ≤ n and 0 ≤ j.

The distribution for each random variable is uniform on the interval [0, 1]. We define

the sample space Ωn as all possible sets of values of these random variables. In other

words, it is an ordered n-tuple of sequences a1, a2, . . . , an : N → [0, 1]. In a given

instance σ ∈ Ωn, we define the value of a vertex v = (v1, v2, . . . , vn) ∈ Nn as the

sum valσ(v) = a1(v1) + a2(v2) + · · · + an(vn). We are given one parameter t and

define the threshold to be 1+t. A vertex v is open if val(v) < 1+t and closed

otherwise. We also define a configuration space Fn = {σ : Nn → {0, 1}} where each

configuration specifies only which vertices v of Nn are open (σ(v) = 1) and which

are closed (σ(v) = 0). For each n, t we also define a map ft : Ωn → Fn where ft(σ)
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is the configuration defined by the values of the vertices given by σ, i.e.,

ft(σ)(v) = 1⇔ valσ(v) < 1 + t.

For each t, the allowable configurations are in the set ft(Ωn) ⊂ Fn. In N2, we denote

ai = a1(i) and bi = a2(i) to eliminate unnecessary clutter. Figures 2.1 and 2.2 have

sample configurations in the case n = 2 and t = 0. The filled squares represent closed

points. Notice that there is a great deal of structure in these configurations; many

of the lines are mostly open (mostly white) or mostly closed (mostly black). Mostly

closed lines have a high value while mostly open lines have a low value.

Given a uniformly random σ ∈ Ωn, is 0n is in an infinite open cluster in the

configuration ft(σ)? If the answer to this question is yes, we say ft(σ) percolates.

Otherwise, the configuration does not percolate. To define the percolation prob-

ability, θ(t), we define a percolation function Θt : Ωn → {0, 1} by

Θt(σ) =

 0 if ft(σ) does not percolate

1 if ft(σ) percolates.

Then θ(t) is defined as

θ(t) = Pr[Θ(σ) = 1]

where σ ∈ Ωn is uniformly random. It is also useful to know the probability that

a uniformly random σ ∈ Ωn is mapped to a given τ ∈ Fn. To this end we define

ρt : Fn → [0, 1] as

ρt(σ) = Pr[ft(τ) = σ]

14



Figure 2.1: Example coordinate percolation configurations
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Figure 2.2: Example coordinate percolation configurations
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for a uniformly random τ ∈ Ωn.

Although the main focus of this work is on computing the percolation probability,

it is often useful to look at cluster size as well. Define C(σ) to be the open cluster

containing the origin for a given configuration σ ∈ Fn. Then the expected cluster

size, χ(t), is defined as

∞∑
k=0

k · Pr[|C(σ)| = k] =
∑
σ∈Fn

|C(σ)|ρt(σ).

The critical exponents for coordinate percolation are the same as the critical

exponents for independent percolation, namely

γ = − lim
p→p−c

lnχ(p)

ln |p− pc|
,

β = lim
p→p+

c

ln θ(p)

ln |p− pc|
, and

δ−1 = − lim
k→∞

ln Pr(|C| ≥ k)

ln k
.

The percolation probability, expected cluster size, and critical exponents all depend

on the dimension n, which will always be clear from context.

We may also consider Nn as a digraph where each edge is oriented in the direction

of the increasing coordinate. In other words

E(Nn) = { ((i1, i2, . . . , in), (i1, . . . , ij−1, ij+1, ij+1, . . . , in))

| (i1, i2, . . . , in) ∈ V (Nn), 1 ≤ j ≤ n}.
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In this case, an “open cluster” is not well-defined in the previous definition. We

define the open cluster at a point v as the set of vertices which may be reached

by open paths beginning at v. In this case, known as oriented percolation, a

configuration percolates if the open cluster at 0n is infinite.

2.3 Properties

We begin with some basic results.

Theorem 2.3.1. For t < 0, θ(t) = 0. For t > 0, θ(t) > 0. For t > 0, χ(t) =∞.

Proof. To prove the first part, let s = 1+t where t < 0. Let σ = (a1, a2, . . . , an) ∈ Ωn

and consider the configuration ft(σ). With probability 1 there exists ji for each

1 ≤ i ≤ n so that ai(ji) > s. Then any point v = (v1, v2, v3, . . . , vn) with vi = ji

for any i is closed in ft(σ). These points form a closed, finite box containing the

origin. Since there are only a finite number of vertices inside the box, any infinite

path containing the origin must contain at least one of these points. Thus none of

these paths are open, and the configuration does not percolate.

For the second part, let t > 0 and σ = (a1, a2, . . . , an) ∈ Ωn. With probability

t/n, ai(0) < t/n for a given i. Therefore, with probability (t/n)n−1, ai(0) < t/n

for each 1 ≤ i < n. In this case, every point (0, 0, 0, . . . , 0, j) in ft(σ) has value

a1(0) + a2(0) + a3(0) + · · · + an−1(0) + an(j) < (n − 1)t/n + 1 < 1 + t so these

points are open. We call such a collection of open points an open line. Thus,

θ(t) > (t/n)n−1 > 0, as desired.
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Finally, since χ(t) is the expected value of the cluster size and t > 0, we know

θ(t) > 0 and χ(t) > θ(t) ∗∞ =∞.

One consequence of this theorem is that the critical threshold, tc, the analogue

in coordinate percolation of the critical probability in independent percolation, is

zero. That is to say, that θ(t) = 0 if t < tc and θ(t) > 0 if t > tc. One consequence

of this theorem is that the critical threshold, tc, the analogue in coordinate perco-

lation of the critical probability in independent percolation, is zero. That is to say,

that θ(t) = 0 if t < tc and θ(t) > 0 if t > tc.

Another immediate consequence of the definition of open and closed points in

coordinate percolation is a forbidden configuration.

Theorem 2.3.2. Given a configuration σ ∈ ft(Ω2) , for any integers m,m′, n, n′,

if the points (m,n) and (m′, n′) are open then at least one of the points (m,n′) and

(m′, n) is also open. Equivalently, if (m,n) and (m′, n′) are both closed then at least

one of the points (m,n′) and (m′, n) is also closed.

Proof. Let σ ∈ f(Ω2). Suppose (m,n) and (m′, n′) are open and (m,n′) is closed

in σ. Let τ = (a, b) ∈ f−1
t (σ). By definition, am +bn < 1+t, a′m +b′n < 1+t, and

am+b′n > 1+t.

a′m + bn = a′m + (b′n − b′n) + (−am + am) + bn

= (a′m+b′n)− (b′n+am) + (am+bn)

< (1+t)− (1+t) + (1+t)

= 1+t
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Figure 2.3: Forbidden Configuration: The points (m,n) and (m′, n′) are open
and the points (m,n′) and (m′, n) are closed. This configuration cannot happen in
coordinate percolation.

So (m′, n) is open, concluding the proof.

Theorem 2.3.2 gives a configuration of points which is forbidden. This is illus-

trated in Figure 2.3, where the filled vertices are closed and the unfilled vertices are

open. This square cannot occur anywhere in an instance of the problem, no matter

how many lines separate the vertices (horizontally or vertically). The absence of

any forbidden configuration allows the use of diagonal moves in the grid (steps from

(m,n) to (m±1, n±1) ) without any change in the size or shape of the open clusters.

This forbidden configuration generalizes to higher dimensions. The proof is in-

ductive, with the base case n = 2 provided by Theorem 2.3.2.

Theorem 2.3.3. If (i1, i2, . . . , in) and (i1±1, i2±1, . . . , in±1) in Nn are both open
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in a configuration σ ∈ ft(Ωn), then there is an open path of length n between these

vertices.

Proof. Let σ ∈ ft(Ωn) be a configuration with open vertices of this form and τ =

(a1, a2, . . . , an) ∈ f−1
t (σ). Without loss of generality, suppose the two open vertices

are 0n = (0, 0, . . . , 0) and 1n = (1, 1, . . . , 1). Since they are open, valτ (0n) < 1+t and

valτ (1n) < 1+t. Consider the n vertices adjacent to 0n, vi = (0, 0, . . . , 0, 1, 0, . . . , 0)

where the 1 is in the ith coordinate. The average value of these vertices is

1

n

n∑
i=1

valτ (vi) =
1

n

n∑
i=1

a1(0) + · · ·+ ai−1(0) + ai(1) + · · ·+ an(0)

=
1

n

(
(n−1)a1(0) + (n−1)a2(0) + · · ·+ (n−1)an(0)

+a1(1) + a2(1) + · · ·+ an(1)

)
=

1

n
((n−1)valτ (0n) + valτ (1n))

<
1

n
((n−1)(1+t) + (1+t))

= 1+t

Since the average value is at most 1+t, there must be some vk with valτ (vk) < 1+t.

This vk is open. We now look for an open path of length n−1 between vk and 1n.

Reduce to a problem of finding an open path for a configuration σ′ ∈ Ωn−1(t− ak(1))

as follows: Define τ ′ = (a1
′, a2

′, . . . , an
′) ∈ Ωn−1 so that

ai
′(j) =

 ai(j) i < k

ai+1(j) i ≥ k
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and σ′ = ft−ak(1)(τ
′) and find an open path between 0n−1 and 1n−1 in the configuration

σ′. With these definitions, every vertex in v with 1 as the kth coordinate is open in σ

if and only if the vertex with the kth coordinate removed is open in σ′. By induction,

we can find an open path ϕ of length n−1 with ϕ(0) = 1n−1 and ϕ(n−1) = 0n−1.

Define ϕ′ by

ϕ′i(j) =


ϕi(j) if i < k

ϕi−1(j) if i > k

1 i = k

when 0 ≤ j < n and ϕ′(n) = 0n. By the construction of σ′ and ϕ′, ϕ′ is an open

path from 1n to 0n, proving the theorem.
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Chapter 3

Algorithmic Approach

The main idea of an algorithmic approach to percolation problems is to develop an

algorithm to find an infinite path containing the origin. This approach is demon-

strated in a sample problem in Section 3.1. In independent percolation, each vertex

needs to be considered individually in order to find the probability of percolation,

making such an algorithm impractical. This is not true in coordinate percolation

since there are dependencies between vertices. Specifically, the forbidden configu-

ration introduced in Theorem 2.3.2 and illustrated in Figure 2.3 allows us to take

a path with no backtracking. This is explored in Section 3.2. With the notion of

backtracking in mind, we define an algorithm to determine if a given configuration

percolates in Section 3.3 and use a variation of this algorithm in Section 3.4 to show

that the probability of percolation with t = 0 is 0. Finally, in Section 3.5 we use an

algorithm to develop an integral equation describing the probability of percolation

in the 2-dimensional case.
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3.1 One Dimensional “Percolation”

We begin our study with a sample problem which will have some relevance later.

This actually models coordinate percolation in the (probability 0) case where the

instance used is (a, a) ∈ Ω2. For each i ≥ 0, we assign a random variable Xi, which

is uniform on the interval [0, 1]. In other words, the sample space is

P = {(X0, X1, X2, . . .)| Xi ∈ [0, 1]}

with the uniform distribution. We also have a configuration space

P (t) = {σ : N→ {0, 1}}

and a function ωt : P → P (t) defined for x = (x0, x1, x2, . . .) ∈ P so that

ωt(x)(n) = 1⇔ xi + min
j≤i
{xj} < 1 + t.

We ask if there are any closed points. We define θ(t) to be the probability that

ωt(x)(n) = 1 for all n ∈ N for a uniformly random x ∈ P .

To solve this problem, we use the same approach we would like to use on the

main problem. First, we analyze the easy cases, then we develop an algorithm

to determine if a given instance x ∈ P percolates. This algorithm gives rise to

an integral equation for the probability function, which we solve to find a closed

expression for our function.

First, the easy cases. If t < 0, then for any x = (x0, x1, x2, . . .) ∈ P , with
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probability 1 there is at least one xi > 1 + t and thus ωt(x)(i) = 0, so θ(t) = 0.

Notice also that if x0 > (1 + t)/2, ωt(x)(0) = 0 and the instance does not percolate.

At any i, let s = minj≤i{xj}. Clearly, if s < t, all the points beyond i are open in

ωt(x). Otherwise, we look for a new minimum value by iterating this process while

incrementing i. Let s′ = xj where xj /∈ [s, 1 + t− s] and xk ∈ [s, 1 + t− s] for every

k between i and j. There are three cases,

1. s′ < t,

2. t < s′ < s, and

3. 1 + t− s < s′ < 1.

In the first case, all future points are open. In the second case, we have to iterate

this process with the new minimum value s′ because there is still the possibility

of closed points. In the third case, we have found a closed point in ωt(x). The

probabilities are as follows: the first case occurs with probability t/(2s − t), the

second case with probability (s − t)/(2s − t) and the third case with probability

(s − t)/(2s − t). Since our result depends on the current value, s, we write our

integral equation in terms of a supplemental function χt(s), the probability that the

remaining points are open given that the current minimum is s. From above, we see

that

χt(s) =
t

2s− t
+

s− t
2s− t

χ̂t(s)

where χ̂t(s) is the probability of winning on the next step. The value of this is the
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expected value of χt(s
′) for t < s′ < s which is

χ̂t(s) =
1

s− t

∫ s

t

χt(s
′)ds′.

Therefore, for s > t,

(2s− t)χt(s) = t+

∫ s

t

χt(s
′)ds′.

We solve this integral equation to get

χt(s) =


1 s < t√

t
2s−t

t < s < (1 + t)/2

0s > (1 + t)/2.

The actual value of θ(t) is the integral of this supplemental function. For 0 ≤ t ≤ 1,

θ(t) = 2

∫
0

χt(s)ds

= 2

∫ t

0

ds+ 2

∫ (1+t)/2

t

√
t

2s− t
ds

= t+−t+
√
t

=
√
t.

Note, in particular, that θ(0) = 0.
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3.2 Backtracking in Percolation

What is backtracking? In general, backtracking is taking steps that don’t get closer

to the goal. More precisely, a path ϕ in the n-dimensional lattice Nn backtracks in

the kth coordinate if there is an index i so that (ϕ(i + 1), ϕ(i)) is an edge in the

oriented digraph Nn.

Theorem 3.2.1. Given a configuration σ ∈ ft(Ωn), if there is an open path from

(0, 0, . . . , 0) to (m1−1,m2−1, . . . ,mn−1) in the finite sublattice [m1]× [m2]×· · ·×

[mn], then there is an open path with no backtracking.

Proof. Given σ ∈ ft(Ωn), let ϕ be a shortest open path (0, 0, . . . , 0) to (m1− 1,m2−

1, . . . ,mn−1) in the finite sublattice [m1]×[m2]×· · ·×[mn]. Let τ = (a1, a2, . . . , an) ∈

f−1
t (σ). Suppose ϕ backtracks in coordinate k.

Define the set I = {i | ∃j such that ϕj+1(k) = i and ϕj(k) = i+1}. Let i1 = min I

and i2 = (max I) + 1. Pick i3 so that ak(i) > ak(i3) for any i between i1 and i2

(inclusive). Pick s1, s2 so that

s1 = min{s | ϕk(s) = i3}

s2 = max{s | ϕk(s) = i3}.

Define a new sequence ϕ′ as if it were a path with ϕ′(s) = ϕ(s) for 0 ≤ s ≤ s1 and
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s2 ≤ s ≤ l(ϕ), and for s1 < s < s2 let

ϕ′j(s) =

 ϕj(s) j 6= k

i3 j = k.

ϕ′ between s1 and s2 is the projection of ϕ onto the n−1-dimensional subspace xk = i3

in Nn. It is not a path since it has repeated vertices whenever ϕ moves in the kth

coordinate. This occurs at least once since the set I is nonempty by the assumption

of backtracking in this coordinate. It does define a path if the repeated vertices are

removed, and this path is shorter than ϕ. It remains to show that all the vertices

in ϕ′ are open to arrive at a contradiction. For any s in the interval (s1, s2), the kth

coordinate is in the interval (i1, i2) by the definitions of these two numbers. Thus,

ak(i3) < ak(ϕk(s)). Therefore,

valϕ′(s) = a1(ϕ
′
1(s)) + a2(ϕ

′
2(s)) + · · ·+ ak(ϕk(s)) + · · ·+ an(ϕ′n(s))

= a1(ϕ1(s)) + a2(ϕ2(s)) + · · ·+ ak(i3) + · · ·+ an(ϕn(s))

< a1(ϕ1(s)) + a2(ϕ2(s)) + · · ·+ ak(ϕk(s)) + · · ·+ an(ϕn(s))

= valϕ(s)

< 1 + t

so the vertex ϕ′(s) is open. For s outside this interval, ϕ(s) = ϕ′(s) and open by the

choice of ϕ. This completes the proof.

Figure 3.1 illustrates the new path in the 2-dimensional case.
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Figure 3.1: In the two dimensional case, to form ϕ′ from the black path ϕ as in
Theorem 3.2.1, replace the middle section with the grey path.

To relate this to previous work, we need a different interpretation of the integer

lattice. We wish to interpret it as a modular lattice. This is a kind of partially

ordered set, so we’ll need a partial order on the vertices in the integer lattice. We

say a vertex (i, j) is less than or equal to a vertex (i′, j′) if i ≤ i′ and j ≤ j′ and we

write (i, j) ≤ (i′, j′). A partially ordered set forms a lattice if there is a well-defined

meet and a well-defined join. The meet of a and b, written a∧ b, is the element c

so that whenever a ≥ d and b ≥ d it is also true that c ≥ d. Similarly, the join of a

and b, a∨ b is the element c so that c ≤ d whenever a ≤ d and b ≤ d. For the integer

lattice, we define the join of two elements a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

is d = (d1, d2, . . . , dn) where di = max{ai, bi} and their meet is e = (e1, e2, . . . , en)
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where ei = min{ai, bi}.

A modular lattice is a lattice which satisfies the relation a∧(b∨c) = (a∧b)∨c for

every triple of elements a, b, c with a ≥ c. We check that the above definitions of meet

and join satisfy this relation: a ≥ c means that ai ≥ ci for every i so if a∧ (b∨ c) = f

and (a ∧ b) ∨ c = g then fi = min{ai,max{b,ci}} and gi = max{min{ai, bi}, ci} so if

bi ≤ ci then fi = ci = gi and if bi > ci then fi = min{ai, bi} = gi. A bone in a subset

S of a modular lattice is a pair A,B ∈ S where A ∨B and A ∧B are not in S.

In the integer lattice with the subset S of open points defined by some config-

uration σ ∈ Fn, a bone is one of the forbidden configurations from Theorem 2.3.2.

A maximal chain is a path ϕ where ϕ(i) < ϕ(i + 1) and there is no element x in

the lattice with the property that ϕ(i) < x < ϕ(i + 1) for all 0 ≤ i < l(ϕ). These

definitions show that Theorem 3.2.1 follows from the following more general theorem

of Brightwell and Winkler:

Theorem 3.2.2. [2] Let S be a boneless set in a modular lattice L. If S percolates,

it contains a maximal chain.

3.3 An Algorithm for Percolation

By Theorem 3.2.1, we only have to consider oriented coordinate percolation (which

may also be defined as percolation without backtracking) in order to determine

whether or not a given configuration percolates. Table 3.1 is a flowchart describing

an algorithm to determine whether or not an instance τ ∈ Ωn leads to a configuration

ft(τ) ∈ Fn with t > 0 which percolates.
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The idea of this algorithm is to remain at the lowest possible valued vertex until

a lower valued vertex is found. This is a multi-dimensional algorithm with two end

states, G and H. The proof of the correctness of this algorithm will show that if

the instance ends in state G then it has found a closed finite box around the origin,

preventing percolation, and if it reaches the state H then it has found an open line

(1-dimensional subspace) and an open path to this line, showing the configuration

percolates.

The algorithm begins in State A, simply testing whether or not the origin is open

in the configuration ft(τ). State B, which is reached when the origin is open, is an

initialization state. ϕ is the open path that this algorithm is attempting to construct.

For now, it consists only of the origin. The index i represents the length of the path

— ϕ(i) will always be the last point that has been assigned on the path, and the

smallest valued vertex which has been examined (this is shown in Lemma 3.3.1). The

index k represents the current direction — the algorithm looks at further vertices

in this direction. The index jl for l between 1 and n has two functions. First, it

represents how many values have been examined in direction l. At this point, the

values al(m) have been examined for every m < jl and the values al(m) for every

m > jl have not been examined. The second function of the indices jl has to do with

that remaining value, al(jl), which may or may not have been examined. This value

indicates closed points; for l < k the vertex vl = (v1, v2, . . . , vn) where

vm =

 ϕm(i) m 6= k

jl m = l
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is closed. Since ϕ(i) is the lowest valued vertex seen so far, this indicates that all

points w = (w1, w2, . . . , wn) with wm < jm form 6= l and wl = jl are closed. However,

the points on the segment between ϕ(i) and vl are open.

Part of the function of the algorithm is to find these closed points — they close off

one direction the open path may take. If n of these points are found, the configuration

does not percolate, which is shown in Lemma 3.3.2. The remaining function of the

algorithm is to find open lines, which is tested in State C. Lemma 3.3.3 will show

that when valτ (ϕ(i))−maxl{al(ϕl(i))} < t, the configuration percolates.

In State D, a new vertex v is tested to see if it is closed. If it isn’t, the algorithm

will test more vertices in this dimension. If it is, the algorithm asks if it has found

a closed point in every dimension (State J) which would represent a closed box

containing the origin (Lemma 3.3.2). If it hasn’t found a closed point in every

direction, it looks in the next direction by incrementing k (State I).

If the vertex v tested in State D is open, it may be a vertex with a lower value than

that of ϕ(i), which is tested in State E. If it isn’t better, the algorithm increments

jk (State F) and tests the next vertex in the same direction. If it is better, the path

ϕ is updated in State K to include the segment between ϕ(i) and v. The index i is

incremented as much as necessary so that ϕ(i) = v when this state is finished. Since

the path has been updated, the algorithm returns to State C where it tests if it has

found an open line.

To prove the correctness of the algorithm, we establish several lemmas regarding

the behavior and the values of vertices which have already been examined. This will

show that if the algorithm reaches one of its terminating states, then it has reached
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it correctly. Once this is established, we show that for a uniformly random τ in Ωn,

one of the terminating states is reached with probability 1.

Lemma 3.3.1. Given τ = (a1, a2, . . . , an) ∈ Ωn, at any time s, let v = (v1, . . . , vn)

be any vertex with vl < jl for all l. Then valτ (v) ≥ valτ (ϕ(i)). In particular,

ak(vk) > ak(ϕk(i)) for any vk < jk.

Proof. Let vk < jk. There is at least one ı̂ so that ak(vk) was compared to ak(ϕk (̂ı)).

If it won this comparison (ak(vk) < ak(ϕk (̂ı))), then ak(ϕk(i)) would have been com-

pared to something as small or smaller, so we may assume that it lost the comparison

(ak(vk) ≥ ak(ϕk (̂ı))). But in order to change from ϕ(̂ı) to ϕ(i) (with possible other

transitions along the way) the values at each coordinate remain the same or are

smaller, so ak(vk) ≥ ak(ϕk (̂ı)) ≥ ak(ϕk(i)), as desired.

Lemma 3.3.2. Given τ = (a1, a2, . . . , an) ∈ Ωn, if the algorithm described in Ta-

ble 3.1 reaches the state G from the state J then the collection of vertices C =

{v | vl < jl for all but one index l, vl = jl for this remaining index} is a collection

of closed vertices.

Proof. Since every time a new vertex is chosen for ϕ(i) the index variable k is reset

to 1, we need only look at one value for this vertex. Consider any vertex v =

(v1, v2, . . . , vn) where vk = jk and vl < jl for every l 6= k. Since vl < jl, al(vl) ≤

al(ϕl(i)) for every l 6= k by Lemma 3.3.1. Thus valτ (v) = a1(v1) + a2(v2) + · · · +

an(vn) ≥ valτ (ϕ(i))− ak(ϕk(i)) + ak(jk) = valτ (w) where w = (w1, w2, . . . , wn) with

wk = jk and wl = ϕl(i) for all l 6= k. Notice that w is exactly the vertex used in

Step D when it transitions to J, so valτ (w) ≥ 1 + t. Thus valτ (v) ≥ 1 + t and v is

closed.
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In the future, we will call such a collection of closed vertices a closed box

containing the origin.

Lemma 3.3.3. Given τ = (a1, a2, . . . , an) ∈ Ωn, if the algorithm reaches state H,

then the configuration arising from the instance τ percolates.

Proof. Let τ = (a1, a2, . . . , an) ∈ Ωn. Reaching state H means that valτ (ϕ(i)) −

maxl{al(ϕl(i))} < t. Let k be the index of the maxl{al(ϕl(i))}. For any vertex v

with vl = ϕl(i) for l 6= k, valτ (v) = valτ (ϕ(i))−ak(ϕk(i))+ak(vk) < t+ak(vk) < t+1.

This collection of vertices is connected and infinite. Call it A. Consider ϕ(j). For

any j there are values i, i′ where i changes to i′ and ϕ(j) is set during the same

instance of step K. Then j ≤ i′. If j = i′ then valτ (ϕ(j)) < valτ(ϕ(i)) and ϕ(i)) is

open by induction (with base case i = 0, ϕ(0) = 0n). Otherwise, j < i′. Then there

was a point v with vk = ϕk(j) and valτ (v) < 1 + t which was used to increment jk

after the comparison in step D. Since al(ϕl(j)) = al(ϕl(i)) < al(vl) for every l 6= k

by Lemma 3.3.1, valτ (ϕ(j)) < valτ (v) < 1 + t. Therefore the path ϕ is open. Thus

ϕ and the vertices from the set A form an infinite set of connected open vertices

containing the origin. Thus, there is an infinite open cluster containing the origin,

as desired.

Proof of Correctness of Algorithm. Let τ = (a1, a2, . . . , an) ∈ Ωn be uniformly ran-

dom. Lemma 3.3.2 shows that if we reach state G, the instance τ does not lead to

a configuration which percolates. Lemma 3.3.3 shows that if we reach state H then

the instance τ does lead to a configuration which percolates. Since these are the only

terminating states, it remains to show that the algorithm terminates. This is done

by induction on the number of dimensions.
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In two dimensions, we have two values, j1, j2. If j2 does not increase, then we

are stuck with the current y, ϕ2(i) and its value a2(ϕ2(i)). If a2(ϕ2(i)) < t, then the

check in State C transitions to State H, and the algorithm terminates. Otherwise,

with probability 1 there is a closed point on the line y = ϕ2(i). Say this point is

(x0, ϕ2(i)). As j1 increases we will either reach an open line x = x1 with x1 < x0

(when j1 = x1) or we will reach the closed point (when j1 = x0), both of which cause

the algorithm to terminate.

Suppose that we know the algorithm terminates in n−1 dimensions. We want to

show that is terminates in n dimensions. In Section 3.1, we found that for a series

of uniform values on [0, 1], with probability 1 there is a time when the sum of the

minimum and the maximum values exceeds 1. So we can pick z0, z1 so that an(z0) =

minj≤z1{an(j)} < t/n and an(z0) + an(z1) ≥ 1. Let τ ′ = (a1
′, a2

′, . . . , an
′) ∈ Ωn−1

be the instance where a′i(j) = ai(j) for every 1 ≤ i ≤ n−1 and j ≥ 0. Run the

n−1-dimensional algorithm with instance τ ′ and threshold 1 + t − an(z0). Notice

that this terminates, by the induction hypothesis.

Suppose this percolates and the final vertex is ϕ′(i). Notice that the path ϕ′ is

the same as the one we would find running the algorithm on τ except that it may not

terminate at the first open line because it may be the case that this depends only on

the first n−1 dimensions. However, if it continues to run, it will find ϕ′(i). Assume

jn > z0 and let z = (ϕ′1(i), ϕ
′
2(i), . . . , ϕ

′
n−1(i), z0). Suppose an(z0) < maxl{al(ϕ

′
l(i))}.
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Then

valτ ′(ϕ
′(i))−max{an(z0),max

l
{al(ϕ

′
l(i))}} = valτ ′(ϕ

′(i))−max
l
{al(ϕ

′
l(i))}

< t− an(z0)

and

valτ (ϕ(i))−max{an(z0),max
l
{al(ϕ

′
l(i))}}

= valτ ′(ϕ
′(i))−max{an(z0),max

l
{al(ϕ

′
l(i))}}+ an(z0)

< t− an(z0) + an(z0)

= t.

Otherwise, an(z0) > maxl{al(ϕ
′
l(i))} and valτ (z) < nan(z0) < n(t/n) by the choice

of z0. This forces ϕ to terminate in a point which forces the transition from step C

to step H.

Otherwise, the n−1-dimensional algorithm with instance τ ′ and threshold 1+ t−

an(z0) does not percolate. Suppose the final vertex is ϕ(i) and the final box has sides

x1 = j1, s2 = j2, . . . , xn−1 = jn−1. Then the algorithm with instance τ and threshold

1 + t will find the box with sides x1 = j1, s2 = j2, . . . , xn−1 = jn−1, xn = z1, if not

a smaller box. The minimum vertex in this box is z = (ϕ′1(i), ϕ
′
2(i), . . . , ϕ

′
n−1(i), z0).

For 1 ≤ l ≤ n−1, if we change the lth coordinate of z to jl the value of this vertex

is at least 1 + t − an(z0) + an(z0) > 1 + t by the termination of the algorithm

with instance τ ′ and threshold 1 + t − an(z0) in state G. Thus these vertices are
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closed. The vertex (ϕ′1(i), ϕ
′
2(i), . . . , ϕ

′
n−1(i), z1) has value valτ ′(ϕ(i)) + an(z1) >

t+ maxl{al(ϕl(i))} + an(z1) > t+ t/n + an(z1) > t+ an(z0) + an(z1) > 1 + t and is

thus closed. Therefore, all of the vertices on the sides of the box are closed.

So, if jn > z1, we know the algorithm must have terminated. Otherwise, without

termination, jn has obtained its maximum. Let ϕ(i) be a vertex on the path after

jn achieves its maximum. Define π : Ωn × Nn → Ωn−1 by (τ, v) 7→ τ ′ where a′i(j) =

ai(j+ vi) for 1 ≤ i ≤ n− 1 and 0 ≤ j. Notice a vertex w′ = (w1, . . . , wn−1) ∈ Nn−1 is

open in ft−an(vn)(φ(τ, v)) if and only if the vertex w = (w1 + v1, . . . , wn−1 + vn−1, vn)

is open in ft(τ). Run the algorithm on π(τ, ϕ(i)) with threshold 1 + t − an(vn).

This creates a path which corresponds to the path the algorithm takes in Nn (the

correspondence is in the direction the steps take), but we know the algorithm termi-

nates. If it terminates in the “Percolates” state, then the n-dimensional algorithm

also terminates in the “Percolates” state. If it terminates in the “Does not Perco-

late” state, suppose the final vertex is ϕ′(j). If the vertex z = (ϕ′1(j)+ϕ1(i), ϕ
′
1(j)+

ϕ1(i), . . . , ϕ
′
n−1(j)+ϕn−1(i), jn) is closed, the n-dimensional algorithm terminates in

state does not percolate. Otherwise, z is open and jn increases, contradicting the

hypothesis that jn had obtained its maximum.

3.4 Percolation at the Critical Threshold

Recall from Theorem 2.3.1 that the critical threshold is tc = 0.

Theorem 3.4.1. For n ≥ 2, θ(0) = 0.

Proof. This proof amounts to showing that the algorithm in Table 3.2 is correct and
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that it terminates with probability 1. Let τ = (a1, a2, . . . , an) ∈ Ωn. Note that at

all times, a < ai(l) for every l < ji and 1 ≤ i ≤ n. Reaching state J amounts to

finding that ak(jk) > 1−a for every k. Consider a vertex w = (w1, w2, . . . , wn) where

wk = jk for one integer k and wi < ji for all i 6= k. Thus,

valτ (w) = a1(w1) + a2(w2) + · · ·+ an(wn)

≥ (n− 1)a+ ak(jk)

≥ (n− 1)a+ 1− a

> 1.

So all these points w are closed and form a box enclosing the origin. Thus the

instance does not percolate.

To show that the algorithm terminates with probability 1, notice that we cannot

leave the C → H → G → C loop until we find jk so that ak(jk) /∈ [a, 1 − a]. The

probability that this jk has ak > 1 − a is exactly 1/2 when a < 1/2. If it isn’t, the

point v is closed. Since valτ (v) < valτ (0n) the origin is also closed, which means it is

not in an open cluster. We can safely ignore this case. Thus, the probability that the

algorithm does not terminate when k reaches n+ 1 is exactly 1− 2−n < 1. In order

for the algorithm to fail to terminate, every time it reaches state F this must occur.

But if it does not terminate the mth time it reaches this state, then with probability

1 it will reach state F again, so it will pass through state F at least m times for every

m. The probability of reaching state F m + 1 times is (1 − 2−n)m. The probability

that the algorithm does not terminate is therefore limm→∞(1−2−n)m = 0. Therefore,
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the algorithm terminates with probability 1 and θ(0) = 0, as desired.

3.5 An Integral Equation

As we did in Section 3.1, we now want to develop an integral equation to describe

θ(t). We restrict our attention to the case n = 2. Since the algorithm depends on the

current values we are looking at, this will actually be for a supplementary function,

χt(ai, bj) where the current lowest point is (i, j). In this case, χt(r, s) = 1 if r < t or

s < t and

θ(t) =

∫ 1

0

∫ 1

0

χt(r, s)drds.

We now want to examine χt(r, s) for other values of r, s. Using the algorithm in

Table 3.1 in the case of n = 2, we look at the value aj1 first to find a closed point

and must look at it again after finding a lower value in the other coordinate, to

make sure the lower value is low enough. This causes the value to be dependent, so

we adapt the algorithm slightly. We describe the entire algorithm below, and this

adaptation is in step 3b. As we enter this process, we assume we have just assigned

the vertex ϕ(i) = (i1, i2) (beginning with ϕ(0) = (0, 0)) and recall that we will use

the convention a1(i) = ai, a2(j) = bj. Increment i′1 starting at i1 until one of the

following occurs:

1. We find i′1 > i1 with ai′1
< t. In this case, we have reached an open line and

the instance percolates.

2. We find i′1 > i1 with t < ai′1
< ai1 . In this case, we iterate the process with the
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new vertex (i′1, i2), appending the segment between (i1, i2) and (i′1, i2) to the

path ϕ.

3. We find i′1 > i1 with 1 + t − bi2 < ai′1
< 1. The point (i′1, i2) is closed. Now

iterate i′2 starting at i2 until one of the following occurs:

(a) We find i′2 > i2 with bi′2 < t. In this case, we have reached an open line

and the instance percolates.

(b) We find i′2 > i2 with t < bi′2 < 1 + t − ai′1
. Notice the original algorithm

requires only that bi′2 < bi2 , in which case the point (i′1, i
′
2) may be closed.

This change assures that this point is open, in which case all of the points

on the segment between (i1, i
′
2) and (i′1, i

′
2) are open. In this case, we

iterate the process with the new vertex (i1, i
′
2).

(c) We find i′2 > i2 with 1 + t− ai1 < bi′2 < 1. The point (i1, i
′
2) is closed, so

we terminate the algorithm and the instance does not percolate.

Assign r = ai1 and s = bi2 . As i′i is incremented, successive values of ai′1
are

examined until one is found in the range R = [0, t]∪ [t, r]∪ [1+ t− s, 1]. Let r′ = ai′1
.

If these successive values are independent of the values already examined, then

Pr[r′ ∈ [0, t]] = t,

Pr[r′ ∈ [t, r]] = r − t, and

Pr[r′ ∈ [1 + t− s, 1]] = s− t,

40



so Pr[r′ ∈ [0, t]|r′ ∈ R] = t/(r+s−t). This is the probability that the first case occurs.

Similarly, the probability that the second case occurs is (r − t)/(r + s − t) and the

probability that the third case occurs is (s− t)/(r+s− t). In case 3, we increment i′2

until we find a value s′ = bi′2 in the range S = [0, t]∪[t, 1+t−r′],∪[1+t−r, 1]. If these

successive values are independent of the values already examined, the probability of

case 3a is t/(1 − r′ + r), the probability of case 3b is (1 − r′)/(1 − r′ + r), and the

probability of case 3c is (r − t)/(1− r′ + r).

The cases are mutually exclusive events, so the probability of percolation is the

sum of the probability of percolation in the case times the probability of the case

occurring. Case 1 percolates with probability 1. Case 2 percolates with probability

χt(r
′, s), assuming that successive iterations of the algorithm are independent. Case

3a percolates with probability 1. Case 3b percolates with probability χt(r, s
′), assum-

ing that successive iterations of the algorithm are independent. Case 3c percolates

with probability 0.

This would result in the equation

χt(r, s) =
1

r + s− t

[
t+ (r − t)χt(r

′, s) +
s− t

1− r′ − r
(t+ (1− r′)χt(r, s

′))

]
.

However, this equation depends on r′ and s′, which are not defined, making the

entire expression nonsense. However, in case 2, r′ is chosen to be uniformly ran-

dom on [t, r], so the correct value of the probability of percolation is the average

probability over this interval, namely 1
r−t

∫ r

t
χt(r

′, s)dr′. In case 3, r′ is chosen to

be uniformly random on the interval [1 + t− s, 1] and in case 3b, s′ is chosen to be

uniformly random on the interval [t, 1 + t− r′]. Thus the probability of percolation
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in case 3b is 1
1−r′

∫ 1+t−r′

t
χt(r, s

′)ds′ and the probability of percolation in case 3 is

1
s−t

∫ 1

1+t−s

(
t+
∫ 1+t−r′

t
χt(r, s

′)ds′
)
dr′. So the total probability of percolation is

χt(r, s) =
1

r + s− t

[
t+

∫ r

t

χt(r
′, s)dr′

+
1

1− r′ − r

∫ 1

1+t−s

(
t+

∫ 1+t−r′

t

χt(r, s
′)ds′

)
dr′
]

which becomes

χt(r, s) =
1

r + s− t

[
t+

∫ r

t

χt(r
′, s)dr′ +

∫ s

t

1

r + r′ − t

(
t+

∫ r′

t

χt(r, s
′)ds′

)
dr′

]

with a change of variables.

This analysis depends on successive iterations of the algorithm being independent.

This may not be the case. Although values of b beyond i′2 are never examined, if

case 3 is called the values ai with i between i1 and the last value of i′1 have already

been examined, so it would seem that these values are dependent. This is true.

Fortunately, none of these values matter. We have the following Lemma:

Lemma 3.5.1. Any value in of ai which has already been examined will not trigger

one of the cases in this process.

Proof. Consider an i in the range (i1, i
′
1). Since i′1 > i, the value ai did not fall in the

set R, defined previously. In other words, ai ∈ (r, 1+t−s). A value s′ has been found

in the range [t, 1 + t − r′] since the algorithm is running again. But s′ < 1 + t − r′

implies that s′ < s so in the new iteration of the algorithm all values that were

previously ignored (specifically, ai) are ignored again. This range of ignored values is
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(a) χt(r, s) with t = .1

(b) χt(r, s) with t = .1

Figure 3.2: Examples of χt with (a) t = .1 and (b) t = .2.
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now (r, 1+ t− s′) and includes, in addition, r′, so the new indicator i′1 will increment

at least one farther than in the previous iteration of the algorithm.

Therefore, any values that trigger one of the cases will be independent in all

iterations. So the probability of percolation is given by the integral equation above.

Unfortunately, our attempts to find an explicit solution to this integral equation

have so far failed. Figures 3.2 and 3.3 show graphs of χt(r, s) for r, s ∈ [0, 1] from

various points of view. Notice that each of these displays the following characteristics:

χt(r, s) = 1 when r or s is less than t, χt(r, s) = 0 when r+ s > 1 + t, the remaining

values of r, s have a mostly constant value of χt(r, s), but it increases sharply as r

or s approaches t. In Section 4.2, we will show θ(t) is analytic except at t = 0, and

continuous at t = 0, from which it will follow that χt(r, s) is continuous except at

the line r+s = 1+ t. The continuity of the function is lost in these discrete pictures,

however.

This process will be revisited in Section 6.1, where it is compared to other equiv-

alent processes and leads to our main result in Section 6.3.
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(a) χt(r, s) with t = .3

(b) χt(r, s) with t = .4

Figure 3.3: Examples of χt with (a) t = .3 and (b) t = .4.
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A: Is valτ (0n) < 1+t?

B: Set ϕ(0) = 0n

i = 0
k = 1
jl = 1 for all 1 ≤ l ≤ n.

C: Is valτ (ϕ(i))−maxl{al(ϕl(i))} < t?

D: Define v = (v1, v2, . . . , vn) where

vl =

{
ϕl(i) l 6= k
jk l = k

Is valτ (v) < 1+t?

E: Is ak(ϕk(i)) < ak(jk)?

F: Set jk = jk + 1.

G: Does not Percolate

H: Percolates

I: Set k = k + 1

J: Is k = n?

K: For m = 1 to jk − ϕk(i), set

ϕl(i+m) =

{
ϕl(i) l 6= k
ϕl(i) +m l = k

Set i = i+ jk−ϕk(i), jk = jk +1,k = 1.

yes

��/
//

//
//

//
//

no //

��

��
no

yes

44iiiiiiiiiiiiiiiiiiiiiiiiiiii

yes

$$J
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

no //

yes

OO

no
oo

kkVVVVVVVVVVVVVVVVVV

MM

no

ZZ44444444444444444

yes

OO

vvnnnnnnnnnnnnnnnnn

Table 3.1: A flowchart describing an algorithm without backtracking to determine
whether the given instance τ ∈ Ωn percolates.
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A: v ← 0n

jk ← 1 for each integer 1 ≤ k ≤ n
done ← true

B: a← mini{ai(vi)}
k ← 1
done ← true

C: ak(jk) < a?

D: vk ← jk
jk ← jk + 1
k ← k + 1
done ← false

E: k > n?

G: jk ← jk + 1

H: ak(jk) > 1− a?

I: k ← k + 1

F: done == true? J: Does not Percolate

��

��

yes

��

##G
GGGGGGGGGGGGGGGG

no

OO

yes

��

yes //

uukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

no //

{{wwwwwwwwwwwwwwwwwwwwwwww

yes

{{wwwwwwwwwwwwwwwwwwwwwwww

no

ii

no

AA

Table 3.2: A flowchart describing the algorithm to show that there are no τ ∈ Ωn

which lead to a configuration f0(τ) ∈ Ωn(0) which percolates.
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Chapter 4

Combinatorial Approach

In the algorithmic approach, we generate and store a limited number of the usually

infinite number of random variables at any one time, answering, for each allowed

configuration in Fn, the decision question, “Is percolation possible in this configu-

ration?” The probability question, “What is the probability, θ(t), of percolation?”

seems more difficult to tackle with combinatorics, because there are infinitely many

random variables in each instance τ ∈ Ωn, and each of these random variables has a

continuous distribution. To start counting, it is first necessary to limit the problem,

reducing the size of the objects of which we keep track, as we do in Section 4.1. This

leads to a more tractable formula for the percolation probability, θ(t) in terms of a

supplemental probability function P (m,n). We are able to show this formula for θ(t)

is analytic in Section 4.2, except at t = 0. In Section 4.3, we compute a recursive

formula for P (m,n).
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4.1 Limiting the Problem

What do we mean by limiting the problem? Recall from Section 2.2 that θ(t) is

defined as the probability that a uniformly random σ ∈ Ωn has the property that

Θt(σ) = 1. There is an additional space Fn and a special function Θ̃t : Fn → {0, 1}

defined so that the following diagram commutes:

Ωn
Θt //

ft

  A
AA

AA
AA

A {0, 1}

Fn

fΘt

<<

Recall the function ρt : Fn → [0, 1] is defined by

ρt(σ) = Pr[ft(τ) = σ]

for a uniformly random τ ∈ Ωn. It is clear that

θ(t) =
∑

σ3fΘt(σ)=1

ρt(σ).

However, the complexity of the space Fn makes computing ρt(σ) difficult, and the

size of the space makes computing the sum difficult. Therefore, we would like to

have a new space A along with a function f : Ωn → A such that Θt is constant on

f−1(σ) for every σ ∈ A. These conditions are sufficient so that there is a (unique)

function f̃ so that the following diagram commutes:

Ωn
Θt //

f

  @
@@

@@
@@

@ {0, 1}

A

f̃
<<
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Given such a pair A, f , define pA : A→ [0, 1] by

pA(σ) = Pr[f(τ) = σ]

for a uniformly random τ ∈ Ωn. Then

θ(t) =
∑

σ3f̃(σ)=1

pA(σ).

Although this analysis holds for general n, we only apply it in the case n = 2.

Suppose am < t. It follows that all points (m, j) are open, for any j, and if any one of

these points is accessible, then following the line x = m is a path to infinity. In this

case, the values of the random variables am+1, am+2, . . . do not affect the accessibility

of the points (m, j), so they may be safely discarded. Similarly, if bn < t, then the

values bn+1, bn+2, . . . may be ignored.

In this way, if m is the first value so that am < t and n is the first value so

that bn < t, there are only m+n independent random variables to consider, each

with uniform distribution on the interval [t, 1]. Define a space Ωt(m,n) as the set

of pairs of functions (a : {0, 1, . . . ,m−1} → [t, 1], b : {0, 1, . . . , n−1} → [t, 1]). Let

A = {(m,n, σ)| m,n ∈ N, σ ∈ Ωt(m,n)}. The obvious map f : Ω2 → A is the map

(a, b) 7→ (m,n, (a|{0,1,...,m−1}, b|{0,1,...,n−1})) where m,n are defined as above.

The values of m,n may also be considered as independent random variables,

each having a geometric distribution with parameter t. In other words, for any

k ∈ N, Pr[m = k] = t(1 − t)k. So
∑

σ pA(m,n, σ) = t2(1 − t)m+n where the sum

is over all of these reduced configurations. Unfortunately, we must still consider
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Figure 4.1: (a) The configuration (2, 2, {a0 = .5, a1 = .7, b0 = .5, b1 = .2}). (b) The
configuration (2, 2, {a0 = .5, a1 = .7, b0 = .5, b1 = .7}). Notice that when t = .1, the
points are open and closed as indicated, so (a) percolates and (b) does not. Recall
the lines x = 2, y = 2 are open in both cases.

all the reduced configurations separately because it is easy to find examples where

f̃(m,n, σ) 6= f̃(m,n, τ). See Figure 4.1 for an example in the case where m = n = 2.

Fix a configuration σ ∈ Ω2. Assume it satisfies the following properties:

1. There is a known path from a given point, (m,n) to infinity.

2. For every i < m, ai > t and the point (i, n) is open.

3. For every j < n, bj > t and the point (m, j) is open.

Let the probability of percolation in this setup be given by P (m,n). It is easiest

to think of P (m,n) as the probability of percolation if the lines x = m and y = n

are the first open lines. It is clear that the conditions of the definition are satisfied

if these are the first open lines, although the definition is weaker than the condition

that these lines are open. With this definition in hand, the probability of percolation
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may be calculated as

θ(t) =
∞∑

m=0

∞∑
n=0

P (m,n)t2(1− t)m+n (4.1.1)

since the condition that x = m and y = n are the first open lines divides the

sample space into mutually exclusive events. This reduces the problem to computing

P (m,n) for each pair (m,n) if P (m,n) is independent of t, which will be shown in

Theorem 4.1.1. This proof relies on the fact that for any σ ∈ Sn and independent,

identically distributed continuous random variables X1, X2, . . . , Xn, the probability

that Xσ(1) < Xσ(2) < · · · < Xσ(n) is 1/n!. Define an involution ρ : Ωt(m,n) →

Ωt(m,n) by (a, b) 7→ (a, c) where c : {0, 1, . . . , n−1} → [t, 1] is defined by

c(i) = 1 + t− b(i).

Abbreviate c(i) as ci. The condition of an open point, ai + bj < 1 + t is equivalent

to the condition ai < cj. We have lost the information about whether points outside

of the box [m]× [n] ⊂ N2 are open and closed, but this does not affect percolation.

Define a new configuration space Tt(m,n) = {σ : [m] × [n] → {0, 1}} and a map

ht : Ωt(m,n)→ Tt(m,n) by

ht(σ)(i, j) = 1⇔ ai < cj

where the ai, cj are taken from the instance σ.

This redefinition of the problem allows us to look at the words a = a0a1a2 . . . am−10
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Integer Index in σ Corresponding Line

1 x = 0
2 x = 1
...

...
i+ 1 x = i

...
...

m x = m− 1
m+ 1 y = 0

...
...

m+ i+ 1 y = i
...

...
m+ n y = n− 1

Table 4.1: The correspondence between the lines in σ ∈ Ωt(m,n) and the integer
inputs to the permutation τ ∈ Sm+n where gt(σ) = τ .

and c = c0c1c2 . . . cn−11. The condition of an open path from (0, 0) to (m,n) is equiv-

alent to the condition a � c in worm order. For information on worms and worm

order, see Chapter 5 or [2].

Theorem 4.1.1. Define Pt(m,n) as the probability that a uniformly random config-

uration σ ∈ Ω2 satisfying the conditions ai > t, bj > t for all 0 ≤ i < m, 0 ≤ j < n

and am < t, bn < t has the property that Θt(σ) = 1. Then Pt(m,n) = Ps(m,n) for

all 0 < s, t < 1.

Proof. For each t, define a map gt : Ωt(m,n) → Sm+n (where Sn is the permutation

group on n elements) by (a, c) 7→ σ if the set of values of a and c is {x1 < x2 < · · · <

xm+n} and σ(i) = j when i ≤ m and ai−1 = xj, or i > m and ci−m−1 = xj. (See

Table 4.1 to see the correspondence between the integer index in the permutation σ

and the corresponding line in the grid [m] × [n].) Since the values of ai and cj are
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independent, identically distributed continuous random variables, Pr[gt(σ) = τ ] for

a uniformly random σ ∈ Ωt(m,n) and a specified τ ∈ Sm+n is exactly 1/(m + n)!.

Define a map pt : Sm+n → Tt(m,n) as follows: for σ ∈ Sm+n, pt(σ)(i, j) = 1 if and

only if σ(i + 1) < σ(j +m + 1). The map pt also depends on m,n but these values

should be clear from context. Notice for σ ∈ Ωt(m,n), pt(gt(σ))(i, j) = 1 if and

only if gt(σ)(i + 1) < gt(σ)(j + m + 1) if and only if ai < cj since ai = xgt(σ)(i+1)

and cj = xgt(σ)(j+m+1) by the construction of g(t) and xk < xl if and only if k < l.

Therefore, pt ◦ gt = ht.

Let C = {(m,n, σ)| m,n ∈ N, σ ∈ Tt(m,n)} and consider the following commu-

tative diagram:

Ω2
Θt //

f

��

ξ

��

{0, 1}

C

99sssssssssssssssssssssssssss

A
(m,n,(a,b)) 7→(m,n,ρ(a,b)) // A

(m,n,σ) 7→(m,n,ht(σ))

OO

(m,n,σ) 7→(m,n,gt(σ)) // B

f̂

OO

(m,n,σ) 7→(m,n,pt(σ))

eeLLLLLLLLLLLLLLLLLLLLLLLLLLLL

where f̂ is defined to make the diagram commute and ξ : Ω2 → B is the composition

map. However, Pt(m,n) = Pr[Θ(σ) = 1|f(σ) = (m,n, σ′)] for some σ′ ∈ Ωt(m,n).

Thus

Pt(m,n) =
∑

σ∈Sm+n

Pr[f̂(m,n, σ) = 1].

The right hand side of this equation depends only on m,n and the group Sm+n: it
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is independent of t. Therefore, for every s, t, Pt(m,n) = Ps(m,n).

4.2 Analyticity

With a more combinatorial interpretation of the problem, and this formula for com-

puting θ(t), some facts are more readily obtainable than with the algorithmic ap-

proach. The following theorem is one of the more immediate consequences.

Theorem 4.2.1. θ(t) is analytic for 0 < t ≤ 1.

Proof. The formula in (4.1.1) can be rewritten as a power series in the variable

z = 1− t as

θ(t) =
∞∑

m=0

cmz
m (4.2.1)

where

c0 = 1,

c1 = 0, and

cm =
m−2∑
i=0

P (i,m− 2− i)− 2
m−1∑
i=0

P (i,m+ 1− i) +
m∑

i=0

P (i,m− 1) for m > 1.

(4.2.2)

Since θ(0) =
∑∑

02(1)m+nP (m,n) = 0, this is clearly convergent to 0 at z = 1,

and so has a radius of convergence of at least 1. Since cm is a finite sum, it is

convergent, and derivatives of convergent series have the same radius of convergence

as the original function. Therefore, this function is analytic. (For proofs of these
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statements, see any complex analysis textbook. For example, [3].) This gives the

desired range of t.

This theorem emphasizes the approachability of this model of percolation, as the

question of whether or not the probability function is analytic is still not answered in

many other models. The theorem is not complete, however, since it does not address

differentiability at t = 0.

To address differentiability of θ(t) at t = 0, consider the following very limited

algorithm for percolation. For a given σ ∈ Ω2, find the smallest m so that xm < t. If

all of the points (i, 0) with i ≤ m are open, we percolate. Given m, the probability

of percolation by this algorithm is exactly 1/(m + 1) since the variables considered

are c0, a0, a1, . . . , am−1 and this algorithm will reveal percolation if and only if c0 is

the largest of these m + 1 independent, identically distributed continuous random

variables. Thus the total probability of percolation by this algorithm is

∞∑
i=0

t(1− t)m

m+ 1
.

θ(t) must be larger than this quantity. Therefore, for every t we have the ratio

θ(t)

t
>

∑∞
i=0

t(1−t)m

m+1

t
=

∞∑
i=0

(1− t)m

m+ 1
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so the derivative of θ(t) at t = 0, defined as

lim
t→0

θ(t)− θ(0)
t− 0

= lim
t→0

∞∑
m=0

(1− t)m

m+ 1

= lim
t→0
−
∫ ∞∑

m=0

(1− t)mdt

= lim
t→0
−
∫

1

1− (1− t)
dt

= lim
t→0
− ln(t)

does not exist. Therefore, θ(t) is not differentiable at t = 0. In Chapter 6, we prove

a formula for θ(t) in the case n = 2.

Recall in Section 3.5 we defined χt(r, s) as the probability of percolation given

that a0 = r and b0 = s. We now prove this function is continuous. The idea of the

proof is to break down χt(r, s) as the sum of P (m,n, r, s), similar to how we have

broken down θ(t) into the sum of P (m,n), and to show that the P (m,n, r, s) are

continuous. This is due to the fact that it is very unlikely that the change of r to

r + δ is very unlikely to result in a change of the configuration.

Theorem 4.2.1. χt(r, s) is continuous except at the line r + s = 1 + t.

Proof. Let P (m,n, r, s) be the probability of percolation for an instance (a, b) ∈ Ω2

with a0 = r, b0 = s, and the first open lines in each direction being x = m and y = n.

Then

χt(r, s) =
∞∑

m=0

∞∑
n=0

P (m,n, r, s)t2(1− t)m+n.

Thus, if P (m,n, r, s) is continuous for every m,n, r, s then χt(r, s) is continuous

for every r, s. However, P (m,n, r, s) and χt(r, s) are not continuous at the line
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r + s = 1 + t, so we omit this case. For r, s with r + s > 1 + t, χt(r, s) = 0, so it is

continuous for these values. Assume r + s < 1 + t.

Let ε > 0. Pick δ so that ε > 1 − (1 − δ)m+n−1. Select an instance σ = (a, b) ∈

Ωt(m,n) with a0 = r and b0 = s. Let σ′ be the instance which is σ with a0 replaced

with r+δ assuming r+δ+s < 1+t. The difference |P (m,n, r+δ, s)−P (m,n, r, s)| <

Pr[gt(σ) 6= gt(σ
′). But gt(σ) = gt(σ

′) unless there is some i or j so that ai ∈ (r, r+ δ)

or bj ∈ (1 + t− (r + δ), 1 + t− r). The probability that any one of these m+ n− 1

values is outside this range is 1− δ so the probability that all of them are outside the

range is (1−δ)m+n−1. Therefore, the probability that gt is different is 1−(1−δ)m+n−1

and the difference |P (m,n, r + δ, s) − P (m,n, r, s)| < 1 − (1 − δ)m+n−1 < ε. Thus

P (m,n, r, s) is continuous in r. A similar argument shows P (m,n, r, s) is continuous

in s, and this results in χt(r, s) being continuous in r and s, as desired.

4.3 Computing P (m,n)

Since the line y = 0 being open already creates an infinite open cluster containing

the origin, we know P (m, 0) = 1. A similar argument shows P (0, n) = 1. This seems

to be a good place to start a recursion, and we find the following:

Theorem 4.3.1. Given m,n,

P (m,n) =
1

m+ n

[
m∑

i=2

i−1∑
j=1

1

n+ i− 1
P (j − 1, n) +

m+n∑
i=m+1

P (m, i−m− 1).

]
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0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 1 0.5 0.45833 0.44167 0.43333 0.42857 0.42560 0.42361 0.42222 0.42121
3 1 0.5 0.44167 0.41528 0.40099 0.39236 0.38674 0.38287 0.38009 0.37803
4 1 0.5 0.43333 0.40099 0.38256 0.37099 0.36322 0.35774 0.35372 0.35069
5 1 0.5 0.42857 0.39236 0.37099 0.35718 0.34770 0.34088 0.33580 0.33191
6 1 0.5 0.42560 0.38674 0.36322 0.34770 0.33684 0.32891 0.32293 0.31830
7 1 0.5 0.42361 0.38287 0.35774 0.34088 0.32891 0.32006 0.31332 0.30805
8 1 0.5 0.42222 0.38009 0.35372 0.33580 0.32293 0.31332 0.30593 0.30010
9 1 0.5 0.42121 0.37803 0.35069 0.33191 0.31830 0.30805 0.30010 0.29379
10 1 0.5 0.42045 0.37646 0.34835 0.32887 0.31464 0.30385 0.29542 0.28869

Table 4.2: Values of P (m,n)

Proof. Let m,n ∈ N. Recall from Theorem 4.1.1 that

P (m,n) =
∑

σ∈Sm+n

Pr[f̂(m,n, σ) = 1].

Define a map pt : Sm+n → {0, 1} by

pt(σ) = 0⇔ f̂(m,n, σ) = 0.

Therefore,

P (m,n) =
∑

σ∈Sm+n

Pr[pt(σ) = 1].

Let σ ∈ Sm+n. Condition on the value i = σ−1(m+ n).

If i = 1, the correspondence in Table 4.1 says that this corresponds to the line

x = 0. Therefore, in pt(σ), the points (0, i) are closed (pt(σ)(0, i) = 0 since σ(1) >
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Figure 4.2: Since σ(i) = m+ n and σ(j) < σ(k) for every k < i, we have the points
on the north and east boundaries of the interior box are closed.

σ(m+i+1)) for 0 ≤ i < n. In particular, the point (0, 0) is closed so this configuration

does not percolate.

If 2 ≤ i ≤ m, we have σ(i) > σ(j) for every m + 1 ≤ j ≤ m + n. Thus

pt(σ)(i− 1, j −m− 1) = 0. Define

I(σ, i) =

 {σ(j)| j < i or j > m} i ≤ m

{σ(j)| j < i} i > m

Let j = σ−1(min I(σ, i)) be the integer mapping to the minimum element of I(σ, i).

If j > m, we are in the case illustrated in Figure 4.2. Since σ(j) < σ(k) for every

k < i, all of the points (k − 1, j −m − 1) are closed. These and the closed points
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Figure 4.3: Since σ(i) = m + n, we have σ(j) < σ(k), for every k > m, the points
on the line x = k with y ≤ n are open.

(i − 1, k − m − 1) with k > m form a closed box around the origin. Thus the

configuration pt(σ) does not percolate. Otherwise, j < i and we are in the case

illustrated in Figure 4.3. Since σ(j) < σ(k) for every k > m all of the points

(j − 1, k−m− 1) are open. Reduce σ ∈ Sm+n to a permutation τ ∈ Sj+n as follows:

Define a map l : {1, 2, 3, . . . , j + n} → {1, 2, . . . , j,m+ 1,m+ 2, . . . ,m+ n} by

l(k) =

 k k ≤ j

k +m− j k > j

Notice the map o is bijective. Define a map q : I(σ, j)→ {1, 2, . . . , j+n} by q(xk) = k

where I(σ, j) = {x1 < x2 < · · · < xj+n}. Notice this map is also bijective. Let
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τ = q ◦σ ◦ l. Since σ is a bijection between {1, 2, . . . , j,m+ 1,m+ 2, . . . ,m+n} and

I(σ, j), this entire map is a bijection of the sets it is defined on, namely {1, 2, 3, . . . , j+

n}. Therefore, τ ∈ Sj+n. Since τ(k) < τ(l) if and only if σ(o(k)) < σ(o(l)), the

configuration pt(τ) is the same as the restriction of the configuration pt(σ) to the

sublattice [j]× [n]. Thus the probability of percolation in this case is exactly P (j, n).

The probability that j maps to the lowest element in I(σ, j) is 1/(i+ n).

Otherwise, i > m. This is the case illustrated in Figure 4.4. Here, σ(i) > σ(k)

for every k > m and all of the points (k − 1, i−m− 1) are open in pt(σ). We may

restrict the permutation σ to a permutation of the integers {1, 2, . . . , i−1} by defining

q : I(σ, i) → {1, 2, . . . , i − 1} by q(xk) = k where I(σ, j) = {x1 < x2 < · · · < xm+i}.

Let τ = q ◦ σ. Since τ(j) < τ(k) if and only if σ(j) < σ(k), the configuration pt(τ)

is the same as the restriction of the configuration pt(σ) to the sublattice [m] × [i].

Therefore the probability of percolation in this case is exactly P (m, i).

To get the above sum, note that the choice of i occurs with probability 1/(m+n).

When 1 < i ≤ m, we also need to choose a j with probability 1/(i+n) and then per-

colate with probability P (j, n). When i > m, we percolate with probability P (m, i).

The choice of i and j (if applicable) divides the sample space into mutually exclusive

events, so the total probability of percolation is the sum of these probabilities. In

other words,

P (m,n) =
1

m+ n

[
m∑

i=2

i−1∑
j=1

1

n+ i− 1
P (j − 1, n) +

m+n∑
i=m+1

P (m, i−m− 1).

]

as desired.
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Figure 4.4: Since σ(i) = m + n, we have σ(k) < σ(i), for every k > m, the points
on the line y = i with x ≤ m are open.

4.4 A Closer Look

The correspondence to permutations in Sm+n to instances in Ω2 is very predictable.

Given m,n, the probability of a given permutation is 1/(m+n)! and the probability

of a given pair m,n is exactly t2(1 − t)m+n. Therefore, the probability that ξ(σ) =

(m,n, τ) for a uniformly random σ ∈ Ω2 is exactly t2(1− t)m+n/(m+ n)!. Why is it

difficult to decide if this permutation percolates or not?

One answer is that while ξ is a predictable map, pt is not. See Figure 4.5 to

demonstrate this. In order to compute the probability of percolation, we must first
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Figure 4.5: (a) This configuration corresponds to exactly 2 permutations in S4:
(1, 3, 4, 2), (1, 4, 3, 2).(b) This configuration corresponds to exactly 4 permutations in
S4: (1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3). (c) This configuration corresponds to
exactly 1 permutation in S4: (1, 3, 2, 4).

understand this correspondence, and then figure out which configurations percolate,

or we must understand directly which configurations percolate.
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Chapter 5

Worms

A worm, a combinatorial object introduced by Brightwell and Winkler [2], is rela-

tively new and it is explored here. The proofs in this chapter use different techniques

than the proofs in the paper. The set-up and definitions needed to solve the prob-

lems are given in Section 5.1. In Section 5.2, we answer the question “What is a

worm?” and prove that this is well-defined. Section 5.3 studies the binary operation

of addition on worms. This is used in the original application for worms, which is

toward a scheduling problem. Section 5.4 studies two other operations, the meet and

the join, and proves that, with these definitions, the partially ordered set of worms

forms a lattice. Section 5.5 studies the number of worms on a finite (linearly ordered)

alphabet. Section 5.6 gives the application to percolation.
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Figure 5.1: A schedule of a versus b for a = 1, 2, 4, 3, 1 and b = 1, 3, 4, 2, 2, 1.

5.1 Definitions

Suppose a = a0a1 . . . am, b = b0b1 . . . bn and c = c0c1 . . . cl are words on the alphabet

of real numbers. Let ab be the word a0a1 . . . amb0b1 . . . bn and define rev(a) as the

reverse of the word a, that is rev(a) = am . . . a1a0. A schedule of a versus b is

a path in the lattice [m + 1] × [n + 1] beginning at the point (0, 0) and ending at

(m,n) which advances only with steps to the north and the east. For an example

of a schedule, see Figure 5.1. As is done in this figure, the points of the lattice will

usually be labelled with the letters in the words rather than the integers.

For any schedule ϕ of a versus b, there is an associated transpose schedule ϕT

of b versus a obtained by flipping the image across the diagonal x = y.

Figure 5.2 shows the transpose schedule associated to the schedule in Figure 5.1.

We say that a precedes b in worm order, or a � b, if there is a schedule of

a versus b so that ai ≤ bj for all points (i, j) on the path. A scheduling for which
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Figure 5.2: The transpose schedule associated to the schedule of a versus b in Fig-
ure 5.1.

this holds is called a witness. Figure 5.3 shows an example witness of a � b for

the given two words a and b. Although we will show shortly that the relation �

is a pre-order on real words, it is not anti-symmetric. Figure 5.4 gives an example

witness of b � a for the same two words a and b as in Figure 5.3. This is just one of

the many examples showing that � is not anti-symmetric.

Before showing that � is a pre-order, we can list some simple properties that it

tells us about the words it compares.

Theorem 5.1.1. If a � b, then the following are true:

1. a0 ≤ b0

2. am ≤ bn

3. max{ai} ≤ min{bj}

4. min{ai} ≤ min{bj}
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Figure 5.3: A witness of a � b for a and b as in Figure 5.1.

Figure 5.4: A witness of b � a for a and b as in Figure 5.1.

Proof. Let ϕ be a witness of a � b. For any scheduling, we begin at (0, 0) and end

at (m,n), so (1) and (2) are trivial. For (3), let ı̂ be the index of max{ai}. Since

the lattice path must pass through the line x = ı̂, there is a ̂ so that (̂ı, ̂) is on ϕ.

max{ai} = aı̂ ≤ b̂ ≤ max{bj}, as desired. (4) is shown similarly.
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We say that a ≡ b if a � b and b � a.

Theorem 5.1.2. The relation � is reflexive and transitive, so ≡ is an equivalence

relation on R∗ and � forms a partial order on the equivalence classes of ≡.

Proof. Reflexive: Let a be a word. Define a lattice path by beginning at (0, 0). If

at (i, i), move to (i + 1, i) if ai+1 ≤ ai and move to (i, i + 1) otherwise. If not at

(i, i) for some i, move either north or east until reaching this (it will only be one step

away). This path is a witness of a � a.

Transitive: Let ϕ1 witness that a � b and ϕ2 witness that b � c. Create a

witness θ of a � c by first creating a path Φ in [m] × [n] × [l] so that for any point

(i, j, k) on Φ it is true that (i, j) is on ϕ1 and (j, k) is on ϕ2. To create Φ, begin

at (0, 0, 0). When at (i, j, k), the next point is (i + 1, j, k) if (i + 1, j) is on ϕ1.

Otherwise, the next point is (i, j, k + 1) if (j, k + 1) is on ϕ2. Otherwise, the next

point is (i, j + 1, k).

Notice that the next point is still on both paths ϕ1 and ϕ2. The first case only

moves the i coordinate, but ϕ1 is moving in the i coordinate. The second case only

moves the k coordinate, but ϕ2 is moving in the k coordinate. The third case only

moves the j coordinate, and both ϕ1 and ϕ2 are moving in the j coordinate.

From Φ, define θ as follows. Beginning at (0, 0), the steps taken on Φ define the

steps taken on the new path. On Φ, suppose we’re at (i, j, k). We will be at (i, k)

on θ. If Φ goes to (i+ 1, j, k), θ moves to (i+ 1, k). If Φ goes to (i, j, k+ 1), θ moves

to (i, k + 1). Otherwise, Φ goes to (i, j + 1, k) and θ doesn’t move.

For any (i, k) on θ, there is a j (not necessarily unique) so that (i, j, k) is on Φ,

so (i, j) is on ϕ1 and (j, k) is on ϕ2. Thus ai ≤ bj ≤ ck and θ is a witness of a � c,
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Figure 5.5: A witness that ac � bd.

as desired.

Lemma 5.1.1. If a, b, c, d are words, a � b, and c � d then ac � bd.

Proof. Suppose ϕ1 is a witness of a � b and ϕ2 a witness of c � d. Construct a

witness θ of ac � bd by concatenating the paths ϕ1 and ϕ2, as in Figure 5.5.

Lemma 5.1.2. For words a, b with a � b, rev(a) � rev(b).

Proof. For any witness ϕ of a � b, we can reverse the path to form a witness of

rev(a) � rev(b).

A word a is called expanding if each entry is a local maximum and bigger than

all previous entries or a local minimum and smaller than all previous entries. In

other words, for an entry ai, one of the following is true:
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• ai > ai+1 (if it exists) and ai > aj for any j < i, or

• ai < ai+1 (if it exists) and ai < aj for any j < i.

A word b is called contracting if rev(b) is expanding.

5.2 The Existence of Worms

The unique shortest representative of any equivalence class of ≡ is called a worm.

To show the uniqueness of the shortest representative, we first show that any shortest

representative has a distinct form, given in Theorem 5.2.1, and then show that any

two words of that form must be in different equivalence classes. Together, these say

that there is only one shortest representative of any equivalence class, so worms are

well-defined.

Theorem 5.2.1. Suppose w is the shortest word in its equivalence class. Then

w = AcB where A and rev(B) are expanding worms and c is the final occurrence of

the maximum letter in w.

Proof. Suppose w = AcB as in the statement of the theorem and w is the shortest

word in its equivalence class. It is sufficient to show that A is an expanding word,

since symmetry will give that rev(B) is expanding.

Suppose otherwise.

Case 1: A has a sequence of 3 increasing entries. In other words, A = A1a1a2a3A2

where a1 ≤ a2 ≤ a3. Let A′ = A1a1a3A2. Then A ≡ A′ (see Figure 5.6
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Figure 5.6: Witnesses of (a)A′ � A and (b)A � A′ for A′ as in Case 1.

for witnesses) and w is not the shortest word in its equivalence class (A′cB is

shorter).

Case 2: A has a sequence of 3 decreasing entries. This is handled similarly to Case 1.

Case 3: A has an entry which repeats immediately. Since aa ≡ a, w cannot be the

shortest word in its equivalence class.

Case 4: There is a local maximum which is not larger than all previous entries.

Locate one local maximum so that it is smaller than both adjacent local max-

imums, and label this b2 (Note: the adjacent local maximum on the right may

be c, the global max.) Let A = A1b1a1b2a2b3A2 (with b3 = c if necessary, ad-

justing A to Ac). If a1 ≤ a2, then a1b2a2b3 ≡ a1b3. Otherwise, b1aab2a2 ≡ b1a2,

as shown in Figure 5.7. This gives the equivalence of A (or Ac) to a shorter

worm, so w cannot be the shortest word in its equivalence class.
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Figure 5.7: Assuming a1 ≤ a2, (a) a1b2a2b3 � a1b3 and (b) a1b2a2b3 � a1b3. If
a1 > a2, (c) b1aab2a2 � b1a2 and (d) b1aab2a2 � b1a2.

Case 5: There is a local minimum which is not smaller than all previous entries.

Locate a local minimum which is larger than both adjacent local minima and

label it a2. If there is none, let a2 be the last local minimum (and thus the last

entry in A). Let A = A1a1b1a2b2A2, with b2 = c if a2 is the last entry in A.

We may assume that b1 < b2, since it would otherwise have fallen into case 4.

But a1b1a2b2 ≡ a1b2 (See Figure 5.8), so again w cannot be the shortest word

in its equivalence class.

Theorem 5.2.2. Suppose a and b are words of the form in Theorem 5.2.1 with a 6= b.

Then a 6≡ b.

Proof. Since a 6= b, let i be the first entry where ai 6= bi or one of these entries does

not exist. If ai, bi both exist, we may assume that a is expanding. If one of the

entries does not exist, we may assume it is bi.
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Figure 5.8: (a) a1b1a2b2 � a1b2 and (b) a1b1a2b2 � a1b2.

Case 1: Suppose ai > bi and ϕ is a witness that a � b. Since both worms are

expanding up to this point, in the scheduling ϕ, for j ≤ i we can note the

following:

• For any local maximum aj, any points (j, k) on the schedule must have

k ≥ j.

• For any local minimum bj, any points (k, j) on the schedule must have

k ≥ j.

If ai is a local maximum, we know that the points (i, i− 1), (i, i), (i− 1, i+ 1)

are unavailable to our schedule ϕ since these do not satisfy the criterion of a

witness. By the above notes, the points (i, j) with j < i− 1 and (j, i+ 1) with

j ≤ i− 1 cannot be in our schedule. Since the schedule must pass through one

of these points, it cannot be a witness.

Similarly, if ai is a local minimum, the points (i + 1, i1), (i, i), (i − 1, i) are

74



unavailable, so the schedule ϕ cannot be a witness and a 6� b.

Case 2: If ai < bi, there is no witness of b � a. This is similar to Case 1.

Case 3: Suppose bi does not exist, and a is expanding up to entry i. If ai is a local

maximum, then a 6� b since ai > aj = bj for any j < i (Theorem 5.1.1). If ai

is a local minimum, then b 6� a, again by Theorem 5.1.1.

Case 4: If bi does not exist and a is contracting at entry i, then we look at the

last entry in our two words. Suppose bi−1 is a local minimum. Then bi−1 =

ai−1 < aj for j ≥ i. Specifically, bi−1 is smaller than the last entry in a, so

a 6� b by Theorem 5.1.1. Similarly, if bi−1 is a local maximum, then b 6� a by

Theorem 5.1.1.

Thus, a 6≡ b, as desired.

As indicated in the proofs above, the point where a worm changes from expand-

ing to contracting is very important. Unfortunately, it isn’t well-defined whether a

certain index is expanding or contracting, and some worms (such as a = 0, 1) are

both expanding and contracting. To avoid this confusion, define the fulcrum of a

worm to be the average index of the global extrema in the worm. So, at indices less

than or equal to the fulcrum, the worm is expanding, and at indices larger than or

equal to the fulcrum, it is contracting.

The index of the fulcrum falls into one of three categories. For worms of length

0 (for example, a = a0 = 2), the fulcrum is 0 since the 1 entry is both the global

maximum and the global minimum. For worms which have a unique global maximum
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and a unique global minimum, these two indices are adjacent, say at i and i+1, so

the fulcrum is i+ 1
2
. For example, the worm a = 0, 2,−1, 1 has a fulcrum of 3

2
.

The remaining worms will have a repeated global maximum, or a repeated global

minimum. If the indices of the repeated extrema are i−1 and i+1, the remaining

extremum is at index i, which is also the fulcrum. For example, a = 0, 1, 0 has a

fulcrum of 1.

Consistent with this definition, the fulcrum of an expanding worm of length m

is m − 1
2

and the fulcrum of a contracting worm is 1
2
, no matter the length. This

becomes useful for finding an algorithm for the sum of two worms, covered in the

next section.

5.3 The Sum Worm

For two worms a and b, we wish to form a sum worm. Since two worms may have

differing lengths, we cannot just add the entries, so we again look at schedules.

Definition 5.3.1. Let a, b be worms and ϕ a schedule of a versus b. The word

c = a+ϕ b is defined as having i+ j entry ai + bj if the point (i, j) is on the schedule

ϕ. The sum worm, a+ b, is the worm associated with a+θ b where θ is the schedule

so that a+θ b � a+ϕ b for any schedule ϕ.

Theorem 5.3.1. a+ b is well-defined.

Proof. Let m be the length of a, n the length of b, fa be the fulcrum of a and fb

the fulcrum of b. Construct the schedule θ, beginning at (0, 0) and proceeding from

a point (i, j) by the first applicable case in the following algorithm, where if the
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referenced entries do not exist, they are considered to have the same value as the

final entry of the respective worm:

0. If i = m and j = n, then this is the end of the schedule.

1. If i = m, then proceed NORTH to (i, j+1).

2. If j = n, then proceed EAST to (i+1, j).

3. If ai > ai+1, proceed EAST to (i+1, j).

4. If bj > bj+1, proceed NORTH to (i, j+1).

5. If i ≤ fa − 1, j ≤ fb − 1 and ai+1 − ai < bj+1 − bj, proceed EAST to (i+1, j).

6. If i ≤ fa− 1, j ≤ fb− 1 and ai+1− ai > bj+1− bj, proceed NORTH to (i, j+1).

7. If i ≤ fa − 1, j ≤ fb − 1 and ai+1 − ai = bj+1 − bj, proceed NORTH or EAST.

8. If i ≤ fa − 1 proceed EAST to (i+1, j).

9. If j ≤ fb − 1 proceed NORTH to (i, j+1).

10. If ai+1 − ai+2 > bj+1 − bj+2, proceed EAST to (i+1, j).

11. If ai+1 − ai+2 = bj+1 − bj+2, proceed NORTH or EAST.

12. Otherwise, proceed NORTH to (i, j+1).

This constructed a +θ b is the desired minimal sum. Of all the schedules which

have a sum word which is not preceded by a+θ b, let ϕ be the one which agrees with

θ for the longest time. Without loss of generality, we may assume that θ travels east
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Figure 5.9: Construction of the schedule ϕ′

and ϕ travels north when they split, and let i+1 be the index of the first minimum in

a after the split, j the index of b at the split, and k the first index where (i+1, k) is on

ϕ. For future reference, the number j′ is the first index where (i, j) is on ϕ. Note that
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j′ = j is possible. Construct a schedule ϕ′ by following both schedules to the split,

then travelling east to (i+1, j), which is on θ by our construction, then travelling

north to (i+1, k), and finally following ϕ to its end. This is shown in Figure 5.9. From

the definitions, we can write a+ϕ′ b = AB′C and a+ϕ b = ABC where the two words

differ only in B and B′. With this definition, B = ai−1+bj · · · ai−1+bj′ ai+bj′ · · · ai+bk

and B′ = ai−1+bj ai+bj ai+1+bj ai+1+bj+1 · · · ai+1+bk.

Supposing that a+ϕ′ b � a+ϕ b, we know that a+θ b � a+ϕ′ b since ϕ′ agrees with

θ for longer than ϕ. But transitivity would say that a+θ b � a+ϕ b, a contradiction,

so a+θ b must be minimal. It only remains to be shown that a+ϕ′ b � a+ϕ b. This

falls into three cases:

Case 1: i ≤ fa and j ≤ fb. To demonstrate B′ � B, we use the following schedule.

Here, the labels of the indices are used rather than the indices themselves to

help avoid confusion. We must begin at the point with x and y labels ai−1+bj.

Travel north to the point with y label ai−1 +bi+1, one step. Travel east for

two steps to the point with x label ai+1 + bj. Begin alternating two steps

north with two steps east, so that the stopping points along the y-axis are the

maximums and the stopping points along the x-axis are the minimums, until

reaching ai−1+bj′ in y. In so doing, we compare ai−1+bl to ai+1+bl. Since a is

expanding, ai−1+bl ≥ ai+1+bl and the choice of path maintains the comparison

at the intervening steps. Take one step north, advancing from ai−1+bj′ to ai+bj′

in y. If j = j′, this northward step is where we begin our schedule. Continue

with alternating two steps north and two steps east until reaching ai+bk in y,

and take the last northward step to finish the schedule. See Figure 5.10 for
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Figure 5.10: A witness for Theorem 5.3.1, case 1.

clarification.

Case 2: i ≤ fa and j > fb− 1. (Note that if i > fa, then j > fb by the construction

of θ.) To demonstrate B′ � B, we use the following schedule. Here, the labels of

the indices are used rather than the indices themselves to help avoid confusion.

We must begin at the point with x and y labels ai−1+bj. Begin by travelling

north to the y point with label aj+bj′ . Note that since b is contracting and j is

a minimum, bj is the smallest b point, and each of these moves is allowed. Then
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move east to the point with label ai+1+bj′ . Note that since b is contracting, we

need only check that ai+1+bj+1 < ai+bj′ . But bj+1−bj′ < bj+1−bj < aj−ai+1.

Proceed with two steps north then two steps east, as in Case 1. The final step

should again be northward.

Case 3: i > fa and j > fb. To demonstrate B′ � B, we use the same schedule as in

Case 2. To verify ai+1+bj+1 < ai+bj′ recall that ai−ai+1 > bj+1−bj+2 > bj+1−bj′ .

Thus a+ϕ′ b � a+ϕ b, concluding the proof.

5.4 The Set of Worms Forms a Lattice

As we look at worms and the partial order on them, we may ask what properties this

partial order exhibits. In fact, it forms a lattice, with a meet and a join. In order

to show this, we give a definition for something called a join, show it is well-defined,

and then show it is what we would like it to be, specifically that if a � c and b � c

then a ∨ b � c. We define the meet similarly, but the proof that it is well-defined

and what would be expected of a meet are omitted as they follow this proof of the

join exactly.

Definition 5.4.1. Let a, b be worms and ϕ a schedule of a versus b. The word

c = a ∨ϕ b has i + j entry max{ai, bj} for every point (i, j) on the schedule ϕ.

The join a ∨ b is the worm associated with a ∨θ b where θ is the schedule so that

a ∨θ b � a ∨ϕ b for any schedule ϕ. Similarly, define a ∧ϕ b as the word with i + j

entry min{ai, bj} for every point (i, j) on the schedule ϕ and the meet a ∧ b as the
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worm associated with a ∧θ b where θ is the schedule so that a ∧θ b � a ∧ϕ b for any

schedule ϕ.

Theorem 5.4.1. a ∨ b is well-defined.

Proof. Let m be the length of a, n the length of b, fa be the fulcrum of a and fb the

fulcrum of b. Construct the schedule θ, beginning at (0, 0) and proceeding from a

point (i, j) by the first applicable case in the following algorithm:

0. If i = m and j = n, then this is the end of the schedule.

1. If i = m, then proceed NORTH to (i, j+1).

2. If j = n, then proceed EAST to (i+1, j).

3. If ai > ai+1, proceed EAST to (i+1, j).

4. If bj > bj+1, proceed NORTH to (i, j+1).

5. If i ≤ fa − 1, j ≤ fb − 1 and ai+1 < bj+1, proceed EAST to (i+1, j).

6. If i ≤ fa − 1, j ≤ fb − 1 and ai+1 > bj+1, proceed NORTH to (i, j+1).

7. If i ≤ fa − 1, j ≤ fb − 1 and ai+1 = bj+1, proceed NORTH or EAST.

8. If i = m− 1, proceed NORTH to (i, j+1).

9. If j = n− 1, proceed EAST to (i+1, j).

10. If ai+1 > bj+1, proceed EAST to (i+1, j).

11. If ai+1 = bj+1, proceed NORTH or EAST.
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12. Otherwise, proceed NORTH to (i, j+1).

This constructed θ is the desired minimal element. Of all the schedules which

have a sum word which is not preceded by a∨θ b, let ϕ be the one which agrees with

θ for the longest time. Without loss of generality, we may assume that θ travels east

and ϕ travels north when they split, and let i+1 be the index of the first minimum

in a after the split, j the index of b at the split, and k the first index where (i+1, k)

is on ϕ. For future reference, the number j′ is the first index where (i, j′) is on ϕ.

Note that j′ = j is possible. Construct a schedule ϕ′ as in the proof of Theorem 5.3.1

and, for each of the cases, let the schedule of a∨ϕ′ b versus a∨ϕ b be the same as the

schedule of a+ϕ′ b versus a+ϕ b in the corresponding case of the previous proof. It

only remains to show that these schedulings witness a ∨ϕ′ b � a ∨ϕ b.

Case 1: Since a is expanding, max{ai−1, bl} ≥ max{ai+1, bl}.

Case 2: We need only check that max{ai+1, bj+1} < max{ai, bj′}. bj+1 must be a

maximum in b, and j > fb − 1 gives that ai > bj+1. Since ai+1 < ai (ai is a

maximum a), the inequality is shown.

Case 3: Again, we need only show that max{ai+1, bj+1} < max{ai, bj′}. Since the

proof in Case 2 relies only of j > fb − 1 and not i ≤ fa, this is simply a

repetition of the previous argument.

Therefore, a ∨ϕ′ b � a ∨ϕ b, as desired.

Theorem 5.4.2. If a � c and b � c then a ∨ b � c.
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Proof. Suppose ϕ witnesses a � c and ψ witnesses b � c. Construct a schedule ϑ of

a versus b by starting at (0, 0) with k = 0. At a point (i, j) we have a value k. If

(i + 1, k) is on the path ϕ, proceed to (i + 1, j) on ϑ. Otherwise, if (j + 1, k) is on

the path ψ, proceed to (i, j + 1) on ϑ. Otherwise, increment k.

Consider the word a ∨ϑ b. A point (i, j) on ϑ implies by the construction of ϑ

that there is a k so that (i, k) is on ϕ and (j, k) is on ψ. Therefore, we can define a

schedule θ so that (i+ j, k) is on θ whenever (i, j) is on ϑ and for every k satisfying

the above condition. Since ai ≤ ck and bj ≤ ck by the choice of ϕ and ψ, respectively,

the i+ j entry of a∨ϑ b, max{ai, bj}, is less than ck so θ is a witness that a∨ϑ b � c.

Thus, by Theorem 5.4.1, a ∨ b � c.

Theorem 5.4.3. a∧ b is well-defined. In addition, if c � a and c � b then c � a∧ b.

These theorems combine to show that the set of worms forms a lattice under

worm order.

5.5 Counting Worms

Define w(n) to be the number of worms on the alphabet [n]. We say a worm has

range S if every element in S appears in the worm and all the entries in the worm

are represented in S.

Theorem 5.5.1.

w(n) =
1

9

(
4n+1 − 3n− 4

)
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Proof. Suppose w = a1b1a2b2 · · · ambm is any expanding worm, where the ais and

bis are the entries, with a1 = ε if w has an odd number of entries. Define s(w) =

b1a1b2a2 · · · bmam. This is also an expanding worm, and it has the same range as w.

Also, s(s(w)) = w so r is a bijection among expanding worms.

Extend this definition to contracting worms by defining s(w) = rev(s(rev(w)))

when w is contracting.

Every worm with range [n] has one of four forms, defined by the location of the

entries 0 and n−1:

w1 = s(a) (n−1) (0) b

w2 = a (0) (n−1) s(b)

w3 = s(a) (n−1) (0) (n−1) s(b)

w4 = a (0) (n−1) (0) b

where w = a(0)b is a worm with range {0, 1, . . . , n−2} and a, rev(b) are arbitrary

expanding worms on the alphabet {1, . . . , n−2}.

Define v(n) to be the number of worms with range exactly {0, 1, . . . , n−1} and

u(n) as the number of worms with range exactly [n] where the entry 0 appears twice.

We can get these numbers recursively as

v(n) = 4(v(n−1)− u(n−1)) (5.5.1)

u(n) = v(n−1)− u(n−1). (5.5.2)
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Unwinding these, with the initial counts v(1) = 1, u(1) = 0 gives v(n) = 4 · 3n−2 and

u(n) = 3n−2 for n ≥ 2. Combining this,

w(n) =
n∑

k=1

(
n

k

)
v(k) = n+ 4

n∑
k=2

(
n

k

)
3k−2 =

1

9

(
4n+1 − 3n− 4

)
.

Alternative proof of v(n) = 4 · 3n−2. Suppose that we have an expanding worm w =

w0w1 . . . wn−1 with range [n] and wn−1 = 0. The entry n−1 must appear somewhere,

and it must be a maximum in the alternating sequence. But no larger maximums

are available, and wn−2 must be the largest maximum, so wn−2 = n − 1. Similarly,

wn−3 = 1, wn−4 = n− 2, and so on. In all, there is only one worm w satisfying these

conditions.

Similarly, if we select a worm w on the alphabet [n], it is one of the four types

above (w1, w2, w3 and w4) and has two associated sets A and B, the ranges of a and

b, respectively. Given the two sets and the type of the worm, the worm is unique.

For a worm w with range [n], A∪B ∪ {0, n−1} = [n]. The entries 0, n−1 cannot

occur in a or b, but every other i ∈ [n] must occur in one of them, so there are three

choices for this entry: i ∈ A B, i ∈ B A, or i ∈ A ∩ B. To select a worm, we select

one of the four types, then select one of the three sets that each remaining entry can

be in, and the worm is uniquely determined. Thus, there are 4 · 3n−2 worms with

range [n].
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5.6 Worms and Percolation

In Section 4.3, we noted that if ai, bj are random with uniform distribution on [t, 1]

for 0 ≤ i < m, 0 ≤ j < n, then the probability P (m,n) is equal to the probability

for words a = a0a1a2 . . . am−10 and c = c0c1c2 . . . cn−11 that a � c in worm order. If

a and c were worms, each instance would be equivalent to one of the
(

m+n
m

)
different

permutations (we know the final character of a is the smallest and the final character

of c is the largest, so it remains only to pick which worm the remaining characters lie

in), but this is not the case. It is true that a and c are words, but they are usually

not worms.

Consider only a. We say that bf a has the same order type as σ ∈ Sm if

aσ(1)−1 < aσ(2)−1 < aσ(3)−1 < · · · < aσ(m)−1.

Given a specific σ ∈ Sm, the probability that a random word a has the same order

type as σ is 1/m!. We wish to compress the word σ(0) = σ(1)σ(2)σ(3) . . . σ(m) into

an expanding worm since the trailing 0 implies that σ(0) is of type w4 in the proof of

Theorem 5.5.1 with b = ε. Thus, there are 2m−1 possible worms it can compress into

since every 1 ≤ i < m may or may not appear (but appears only once, if it does)

and m must appear.

Suppose w ≡ a0a2 . . . am−10 is a worm on the alphabet [t, 1] ∪ 0 and w =

w0w1 . . . w2kw2k+10 where w0 = ε if a0 > a1. Suppose, in addition, that the pro-

cess in Section 3.5 assigns the point ϕ(k) = (i0, j0) as the last point on the path ϕ

before iterating when run on an instance (a, b) ∈ Ω2 with am < t. Let c = 1 + t− b
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and assume bj > t for j < M where M is really big (in other words, with high

probability percolation will only occur if there is an open path to the line x = m).

Suppose also that wi1 = ai0 . (While this condition is satisfied for many of the i0

which are assigned last, it is not satisfied for all of them.) Then the process will

reach a point on the line x = i2 with ai2 = wi1+2 if and only if there is a cj1 > wi1+1

before a cj2 < wi1 . This is due to the fact that the point (i0, j2) is closed and ai0

is the lowest value with x < i3 where ai3 = wi1+1. If there is not a cj1 > wi1+1

with j1 < j2, all the points (i3, j) with j ≤ j2 are closed, and the instance does not

percolate.

Given k, define the event Ei with 0 ≤ i ≤ k as the event that, for uniformly

random instance (a, b) ∈ Ω2 satisfying all the conditions above, there is a cj > w2i+1

before any ck with ck < w2i. If w0 = ε, define E0 as the event that c0 > a0 = w1.

Then the events Ei are non-negatively correlated, which is to say

Pr[Ei ∧ Ej] ≥ Pr[Ei] Pr[Ej].

Thus, for a given k, the probability of percolation is Pr[E0∧E1∧· · ·∧Ek]. Therefore,

the probability of percolating for a given k is at least 2−k.

This would give a bound on θ(t) if one could compute Pr[a ≡ w|l(w) = 2(k + 1)]

where a is overloaded to mean the word a0a1 . . . am−10 as well as the uniformly

random function N → [0, 1] with ai ∈ [t, 1] for i < m and am < t and w is defined

above. However, efforts to compute this probability have not been successful.
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Chapter 6

A Combined Approach

Recall from Chapter 4 that we can associate a permutation σ ∈ Sm+n to a config-

uration pt(σ) ∈ Tt(m,n) specifying whether the vertices of [m] × [n] are open or

closed. In Chapter 3, we found an algorithm to determine whether or not a config-

uration percolates based on reading successive values horizontally until reaching a

closed point and then reading successive values vertically until finding a better value

or another closed point. There are drawbacks to both approaches. Although the

correspondence between instances and permutations is predictable, the correspon-

dence between configurations and permutations is not. The algorithm is Section 3.3

is very robust, and can be altered so that it outputs a sequence (x0, x1, x2, . . . , xn) for

some n, and we know whether or not this percolates. However, the number of such

sequences is still very large, so it’s hard to say what the probability of percolation is

in general.

This chapter focuses on combining these approaches. From a given instance
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σ ∈ Ω2 we will associate a single permutation τ ∈ Sn. This is done in Section 6.1. In

Section 6.2, we distill the association so it is easier to analyze, resulting in a formula

for the probability of percolation in Section 6.3.

6.1 Associating Instances and Permutations

Define a function $t : Ω2 → Ω2 by $t(a, b) = (a, πt(b)) where the new function πt(b)

is defined by

πt(b)(n) =

 1 + t− b(n) b(n) ≥ t

b(n) b(n) < t.

Notice that this is an involution of Ω2 so choosing a uniformly random (a, b) is the

same as choosing a uniformly random (a, πt(b)). This changes the percolation map

Θt, however. We now define a new map ζt : Ω2 → F2 by ζ(σ)(i, j) = 1⇔ ai < t, cj <

t, or ai < cj where σ = (a, c) ∈ Ω2. Now Θt(σ) = 1 if and only if 0n is in an infinite

open cluster in ζt(σ). Notice that the following diagram commutes, so this does not

change the probability function θt:

F2

��

Ω2

$t

��

ft

>>}}}}}}}}
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The process described in Section 3.5 is restated here with the necessary changes

for an instance (a, c) ∈ Ω2. This process, like the previous one, keeps track of the best

valued point while looking at successive values of ai until it finds a closed point, then

it looks at successive values of cj, until finding one which is high enough that the point

on the same line as the closed point it previously found is open or finding another

closed point. The process is repeated until it finds closed points in both directions or

an open line. Begin with ϕ(0) = (0, 0) and k = 0. While ϕ(k) = (i0, j0), increment

i, beginning with i0, until locating an i so that

1. ai < t — the configuration percolates.

2. t < ai < ai0 — repeat the process with the segment between (i0, j0) and (i, j0)

appended to ϕ, incrementing k so that ϕ(k) = (i, j0).

3. ai > cj0 — increment j, beginning with j0, until locating a j so that

(a) cj < t — the configuration percolates.

(b) cj > ai — repeat the process with the segment between (i0, j0) and (i0, j)

appended to ϕ, incrementing k so that ϕ(k) = (i0, j).

(c) t < cj < ai0 — the configuration does not percolate.

Since this process results in the same path for (a, c) as the process in Section 3.5

for $t(a, c), the proof is omitted.

For this process and all of the processes so far, we have fixed an instance (a, b) ∈

Ωn and examined its properties. However, for a uniformly random (a, b) ∈ Ωn, all

the values ai, bj are independent and uniform on [0, 1]. Thus, if we fix any values,
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such as ai for i ≤ i0 and bj for j ≤ j0, the remaining values are still independent

and uniform on [0, 1]. This observation results in an equivalence between processes

on a fixed instance, such as we have used so far, and processes which generate

the values as needed, as in the process below. This process keeps track of the

minimum and maximum values, µ and ν, respectively, and generates values in the

first direction until finding one that is higher than ν, indicating a closed point, then

generates values in the second direction until finding one higher than the previous

high, which indicates an open point on this line, or one lower than µ, indicating a

closed point. One observes that the probability of success in this process is the same

as the probability of percolation in the previous process.

Begin by generating X, Y each uniform on [0, 1]. If Y < t or X < t, succeed. If

Y < X, fail. Otherwise, set µ = X and ν = Y . Regenerate X multiple times until

it falls into one of the below ranges:

1. X < t — succeed.

2. t < X < µ — iterate with µ = X.

3. ν < X — set ν = X and regenerate Y multiple times until it falls into one of

the below ranges:

(a) Y < t — succeed.

(b) t < Y < µ — fail.

(c) ν < Y — iterate with ν = Y .

Notice that in this process we succeed whenever we generate a value of X or Y
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which is less than t, since this indicates an open line. At any time, the probability

that the next value is less than t is exactly t. Thus, if the process fails, it must fail

before the first value less than t is reached. Therefore, the process is equivalent to

a process wherein it is first decided which value will be the first less than t, and the

values before this are generated uniformly on [t, 1]. The probability that the first

value less than t is the n+1st value generated is given by a geometric distribution,

so it is t(1− t)n.

The process in Table 6.1 is the same as the previous processes, although presented

in a different format. The idea is that the generated values are in the first direction

until one is found that is higher than all the values in the other direction (as in choice

3 above). This generation is on the left side of the table. Once this is found, values

are in the second direction until one is found that is lower than all the values in the

other direction (as in 3b above) or one that is higher than the bad value from the first

direction (as in 3c above). This generation is on the right side of the table. Again,

µ represents the minimum, ν the maximum, and k the number of values generated.

Notice that the probability of success in all these processes is the same, which

results in the following theorem:

Theorem 6.1.1. The probability θ(t) of percolation for a uniformly random σ ∈ Ω2

can be calculated by

θ(t) =
∞∑

n=0

Qnt(1− t)n

where Qn is the probability of success of the process in Table 6.1 when the geometric

variable N is n.
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Generate N with geo-
metric distribution.
N = 0?

Generate X0 uniform
on [t, 1]
ν ← X0

µ← X0

Succeed

k ← k + 1
Generate Xk uniform
on [t, 1]
N = k?

Xk > µ?

Xk < ν?

ν ← X

µ← Xk

k ← k + 1
Generate Xk uniform
on [t, 1]
N = k?

Xk > µ?

Xk < ν?

µ← Xk

Fail

no //
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Table 6.1: A process with probability of success θ(t).

This reduces the problem of calculating θ(t) to calculating Qn for n ≥ 0. Notice

that Q0 = Q1 = 1. There are two processes that would help to compute Qn. Since

N is determined, we eliminate the random variable N in the process in Table 6.1 by

conditioning that n > k, where k is the current time in the process. This process
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is one of the two we could examine in order to calculate Qn. The other process is

described in Table 6.2 and described in the next section.

6.2 A Stochastic Process

Recall from Section 4.1 that for any σ ∈ Sn and independent, identically distributed

continuous random variables X1, X2, . . . , Xn the probability that Xσ(1) < Xσ(2) <

· · · < Xσ(n) is 1/n!. The process in Table 6.1 generates Xk, an independent, uniform

random variable on [t, 1], which falls somewhere in the order of X0, X1, . . . , Xk−1,

which has already been generated. By this observation, generating Xk is equivalent

to adding an element to the permutation σ defined by

Xσ(1)−1 < Xσ(2)−1 < Xσ(3)−1 < · · · < Xσ(k)−1.

Thus, to generate a random permutation uniformly, we assume we have a uniform

permutation σ ∈ Sk and extend it to a permutation δ(σ) ∈ Sk+1. Given a permu-

tation σ, we consider the bijective map δn : Sn × [n + 1]→ Sn+1 where δn(σ, i) = σ′

and σ′ is defined as the mapping

σ′(j) =


σ(j) j 6= n+ 1, σ(j) ≤ i

σ(j) + 1 j 6= n+ 1, σ(j) > i

i+ 1 j = n+ 1.
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Since this mapping is bijective, selecting a uniform (σ, i) ∈ Sn× [n+ 1] is equivalent

to selecting a uniform σ ∈ Sn+1. Define

Ξ =
∞⋃

n=1

Sn × [n+ 1]

and δ : Ξ→ Ξ by δ(σ, i) = δn(σ, i) where σ ∈ Sn. Thus, if the processes in Tables 6.1

and 6.2 were coupled so that the i generated at time k in process 6.2 corresponds

to the position in the order of Xk in process 6.1, then process 6.2 would be in State

C when Xk is generated on the left in process 6.1, in State A when Xk is generated

on the right in process 6.1, and in State D if process 6.1 has failed. Therefore, the

probability of success in process 6.1 for a given n is the sum of the probabilities that

process 6.2 is in State A and that it is in State C.

At time k ≥ 2, the probabilities of changing between the states A, C, and D as

k − 1 is incremented to k are given by the transition matrix

Mk =


1− 1/k 1/k 0

1/k 1− 2/k 1/k

0 0 1

 ,

where the order of the states is A, C, D. For this process, we start in state C at

time k = 2. This state has the probability vector (0, 1, 0). The eigenvalues for

this matrix are 1, λk = 1 + 1
k
(ϕ − 2) and λk = 1 + 1

k
(ϕ − 2) where ϕ = 1+

√
5

2
is

the golden ratio and ϕ = 1 − ϕ. These eigenvalues correspond to the eigenvectors

v = (0, 0, 1), vk = (ϕ, 1, (k − 1)/(2 − ϕ − k)) and wk = (ϕ, 1, (k − 1)/(2 − ϕ − k)).
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σ ← {1 7→ 1}
k ← 1

Pick i ∈ [k+1] uniformly at
random.
σ ← δ(σ, i)

i = k?

k ← k + 1

k ← k + 1

Pick i ∈ [k+1] uniformly at
random.
σ ← δ(σ, i)

i = k?

i = 0?k ← k + 1

k ← k + 1

Pick i ∈ [k+1] uniformly at
random.
σ ← δ(σ, i)
k ← k + 1
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Table 6.2: A process by which we can build random permutations, and decide
whether they percolate.

Define

Λk =
k∏

i=2

λi = (−1)k

(
1− ϕ
k

)
ϕ

Λk =
k∏

i=2

λi = (−1)k

(
ϕ

k

)
(−ϕ−1)

where
(

r
k

)
is the generalized binomial coefficient.
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Lemma 6.2.1. If x = αvi + βwi + γv, then x = αvj + βvj + γ′v for some γ′.

Consequently, if x = αvi + βwi + γv then xMj = αλjvi + βλjwi + γ′v for some value

of γ′.

Proof. Since x = (a, b, c) = αvi + βwi + γv, we have the system of equations

a = αϕ+ βϕ

b = α+ β

c = α
(i− 1)

(2− ϕ− i)
+ β

i− 1

2− ϕ− i
+ γ.

Notice that the first two equations create a system of two equations and two un-

knowns. Since ϕ − ϕ 6= 0, it has a unique solution. To find α′, β′, γ′ where

x = α′vj + β′vj + γ′v we solve the system of equations

a = α′ϕ+ β′ϕ

b = α′ + β′

c = α′
(j − 1)

(2− ϕ− j)
+ β′

j − 1

2− ϕ− j
+ γ′.

The first two equations have the same (unique) solution, so x = αvj + βvj + γ′v, as

desired.
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For the second part,

xMj = (αvi + βwi + γv)Mj

= (αvj + βwj + γ′v)Mj

= αvjMj + βwjMj + γ′vMj

= αλjvj + βλjwj + γ′′v

= αλjvi + βλjwi + γ′′v,

as desired.

Since we will build any permutation σ in Sn by running this algorithm to time

k = n, the probability Qn is the probability that we are not in state D at time n.

6.3 The Percolation Probability

Theorem 6.3.1.

θ(t) =
1 + 3ϕ

5
t2−ϕ +

4− 3ϕ

5
t1+ϕ

where ϕ =
1 +
√

5

2
.1

Proof. Define Qn as the probability that we are not in state D (as in Section 6.2)

after time n. Notice that if N = n, we can define this to mean that the next line is

1Special thanks to Peter Doyle and Mathematica for this closed form.
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open (since this always occurs with probability t). So

θ(t) =
∞∑

n=0

Qnt(1− t)n.

However, the stochastic process is not defined unless n ≥ 2. Consider n = 0 and

n = 1. This corresponds to the configurations where a0 < t and b0 < t, (c0 > 1),

respectively. Thus we always percolate in these cases. Thus,

θ(t) = t+ t(1− t) +
∑
n≥2

Qnt(1− t)n.

We show now that

Qn =

(
1− ϕ√

5

)
(ϕ+ 1)Λn +

ϕ√
5
(2− ϕ)Λn.

However, if w = (a, b, c) is our starting probability vector then the final probability

vector is w′ = (a′, b′, c′) = wM2M3 · · ·Mn and the probability that we are not in

state D is Qn = a′ + b′ = 1 − c′. Our starting vector is w = αv2 + βw2 + γv,

wM2M3 · · ·Mn = αΛnv2 + βΛnv2 + γ′v for some γ′ and a′ = αΛnϕ + βΛnϕ, b′ =

αΛn + βΛn so Qn = αΛn(ϕ+ 1) + βΛn(ϕ+ 1). For the starting vector w = (0, 1, 0),

we have α = 1− ϕ√
5

and β = ϕ√
5
. Since ϕ+ 1 = 1− ϕ+ 1 = 2− ϕ.
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This gives that

θ(t) = t+ t(1− t) + t
∑
n≥2

(1− t)n

[(
1− ϕ√

5

)
(ϕ+ 1)(−1)k

(
1− ϕ
k

)
ϕ

]
+t
∑
n≥2

(1− t)n

[
ϕ√
5
(2− ϕ)(−1)k

(
ϕ

k

)
(−ϕ−1)

]
= t+ t(1− t)

+
3ϕ+ 1

5

[
t1−ϕ − 1− (1− t)(1− ϕ)

]
+

4− 3ϕ

5
[tϕ − 1 + (1− t)ϕ]

where the second equality is by the generalized binomial theorem. Algebraic simpli-

fication leads to

θ(t) =
1 + 3ϕ

5
t2−ϕ +

4− 3ϕ

5
t1+ϕ,

as desired.

The simplicity of this formula is astonishing, and further research hopes to dis-

cover good combinatorial reasons for this.

Corollary 6.3.1. The critical exponent,

β = lim
t→tc+

ln θ(t− tc)
ln(t− tc)

,

is 2− ϕ.
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Proof. Since tc = 0, t2−ϕ > t1+ϕ and ln t < 0 for 0 < t < 1,

ln θ(t)

ln t
≥

ln
(
21+3φ

5
t2−ϕ

)
ln t

=
lnC1 + (2− ϕ) ln t

ln t

≥ 2− ϕ

where C1 = 2(1 + 3φ)/5 is a constant. The lower bound is given by

ln θ(t)

ln t
≤

ln
(

1+3φ
5
t2−ϕ

)
ln t

=
lnC2 + (2− ϕ) ln t

ln t

→ 2− ϕ as t→ 0+

where C2 = (1 + 3φ)/5 is a constant. Therefore,

β = lim
t→0+

ln θ(t)

ln(t)
= 2− ϕ,

as desired.
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Chapter 7

Generalizations

There are many different generalizations that can be made for coordinate percola-

tion, and some of them are explored here. The first problem presented in Section 7.1

is not a generalization, but a reiteration of the original question asked in Section 2.2.

Although we have computed the probability of percolation for the coordinate perco-

lation model in two dimensions, we first asked the generalized question, in n dimen-

sions. Section 7.1 returns to this question and attempts to explore the generalizations

of the methods used in computing this probability, specifically the use of the com-

parison ai < cj for open vertices rather than the sum comparison ai + bj < 1 + t. In

addition, this section looks at coordinate percolation on the triangular lattice.

Section 7.2 and Section 7.3 begin to lay out some of the difficulties faced when

generalizing coordinate percolation to other distributions, such as the normal distri-

bution, on the random variables ai(j) and to other operations, such as multiplication,

being used to combine the coordinate values in different directions.
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Figure 7.1: A configuration where backtracking may be required.

7.1 Lattice Generalizations

Although we have a percolation probability for the nonnegative integer lattice in two

dimensions, there are many other lattices which we may consider. For example, we

could consider the entire integer lattice. The nonnegative integer lattice is considered

in this paper because we do not need to consider backtracking on this lattice to find

open paths containing the origin. However, the proof that backtracking does not

need to be considered relies on the fact that on the grid [n]× [m] we cannot go out of

this box. When we include vertices with negative coordinates, two new possibilities

arise. The first possibility is that percolation is possible in four different main direc-

tions: northeast, northwest, southeast and southwest. There is dependency between

the directions, which forces a more thorough evaluation than saying the probability

of percolation is four times the probability found in Theorem 6.3.1. The second pos-

sibility when vertices with negative coordinates are included is configurations such

as that in Figure 7.1, where immediate backtracking is required.
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However, such configurations are rare enough that they should not change the

probability of percolation. Since the analysis in Theorem 2.3.1 still applies, the

critical threshold in this model is still 1.

Conjecture 7.1.1. Let α(t) be the probability of percolation on the two-dimensional

integer lattice Z2 under the coordinate percolation model. Then

1− (1− θ(t))2 ≤ α(t) ≤ 1− (1− θ(t))4

where θ(t) is given in Theorem 6.3.1.

A lower bound of 1− (1− θ(t))2 is hypothesized because the first quadrant and

the third quadrant are almost entirely independent (sharing only the lines x = 0

and y = 0) so we have two independent coordinate percolation processes that may

percolate. A configuration fails to percolate if both of these fail to percolate. The

upper bound is only conjectured because we do not have four independent processes.

In Section 2.2, the problem statement is generalized to the n-dimensional non-

negative integer lattice, and some progress is made toward finding the percolation

probability in this model in Section 3.3. More progress on this is hopeful, but other

generalizations into the n-dimensional case are possible.

In two dimensions, a one-dimensional subspace (a line) and an n−1-dimensional

subspace (a hyperplane) are equivalent. We generalize to n dimensions by assigning

values to the coordinates, or the hyperplanes. However, it is also possible to assign

the values to the lines, in which case even the indexing of these values is not trivial.

Another possibility when generalizing to n-dimensions is to generalize the problem
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a(i) < b(j) < c(k)
a(i) < c(k) < b(j)
b(j) < a(i) < c(k)
b(j) < c(k) < a(i)
c(k) < a(i) < b(j)
c(k) < b(j) < a(i)

Table 7.1: Possible orders when n = 3

that we can solve; namely, percolation in the model where (i, j) is open if ai < cj.

How does this generalize to higher dimensions? For n = 2, there were only two orders

to consider, ai < cj and cj < ai. It is natural, in this case, to say one order is open

and the other is closed. For n = 3, there are 6 possible orders, listed in Table 7.1.

Which of these orders should be open and which of them should be closed? This

seems to be based on personal choice, but two possibilities will be presented here.

In the first, we map a instance (a, b, c) ∈ Ω3 to a configuration in F3 where (i, j, k)

is open if and only if a(i) < b(j) < c(k). This causes about 1/6 of the vertices to

be open, and does not depend on t, but we can still analyze this case and try to

bring a parameter back in later. Attempts to work out algorithms in this case have

so far been fruitless, but there is hope that progress will eventually be made. What

seems to make this hard is having, in effect, two criteria for whether a vertex is open:

a(i) < b(j) and b(j) < c(k). From the first criterion, high values for b(j) seem to

be good, but the second criterion makes these same high values bad. However, one

approach would be to generate new values of a, b, or c depending on the ordering of

the high values of a, b, and c and the low values of a, b, and c.

Table 7.2 shows some possible states for a percolation algorithm based on these

criteria. The columns represent different orderings for the minimum values of a, b,
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Table 7.2: Possible states to determine whether a configuration percolates if vertices
are open when a(i) < b(j) < c(k).

and c while the rows represent different orderings for the maximum values of a, b, and

c. For example, the first state in the first row represents the state where the minimum

values of a, b, and c are in the order a < b < c and the maximum values are in the

order A < B < C. The states indicate which function to generate further values

for (the first state in the first row generates further values for the function a) with

arrows indicating which states to which this state could transfer. D indicates that

percolation can not occur if the algorithm finds itself in this state. One of these occurs

in row CAB column acb. Suppose the maxima are a(i), b(j), c(k) and the minima are

a(i′), b(j′), c(k′). Since c(k) < a(i) every vertex (i, x, y) we’ve seen is closed. Since

c(k) < b(j), every vertex (x, j, y) we’ve seen is closed. Since c(k′) < b(j′), every
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vertex (x, y, k′) we’ve seen is closed. These three planes form a closed box around

the origin so percolation does not occur. The other D states are similar.

This would lead to a probability of percolation as the algorithm in Table 6.2 did,

except that the probabilities of changing states are unknown. The state abc, ABC

is not a single state; it represents a state where the lowest part of the order is a+b

and the highest part of the order is BC+. Here, we use a+b to mean that there are

some number of a values at the bottom of the order, and this number is at least one,

and then there is a b value, before any c values are seen. The transfer to state BAC

occurs with probability 1/k where we have k values so far, but the transfer to state

BCA occurs with probability i/k where there are i values corresponding to c’s at

the top of the order.

The second possibility is to say a vertex (i, j, k) is open if a(i) < b(j) < c(k)

or b(j) < c(k) < a(i) or c(k) < a(i) < b(j). Again, this does not depend on t,

but it has the advantage of half the vertices being open. However, the analysis is

complicated and it seems unclear what would block percolation. So far, it seems lines

with a(i) < b(j) < a(i) + ε would be good, but that doesn’t tell what would make a

plane bad, which is what blocks percolation in the case with sums and thresholds.

Further analogues are available if we look at other lattices. The most prominent

regular planar lattice other than the integer lattice is the triangular lattice. For the

triangular lattice, we would need to assign three coordinates, one for each direction

of lines, and these coordinates would be subject to a constraint, since the triangular

lattice is two dimensional and therefore cannot have three degrees of freedom. This

would allow the assigning of values to all the lines, and the introduction of a threshold
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Figure 7.2: Part of a configuration for coordinate percolation on the triangular
lattice with threshold 3/2

would indicate which vertices are open and which are closed. One example, with a

threshold of 3/2, given in Figure 7.2.

With a threshold less than 1 on this lattice, there will be closed lines (where the

value of the line itself is more than the threshold). With a threshold more than 2,

there will be open lines (where the value of the line is less than the difference between

the threshold and 2), but it is unclear what happens with thresholds between 1 and

2. The critical threshold here is probably 1, 3/2, or 2. If the triangular lattice is like

the square lattice in that a little bit of freedom will be enough to percolate part of

the time, the critical threshold will be 1. If it is like the planar integer lattice and
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needs half its vertices to be open, the critical threshold will be 3/2. If it needs more

freedom, the critical threshold will be 2. At this point, the only clear information is

that with a threshold t between 1 and 2, with probability 1 there will be open and

closed vertices on every line.

7.2 Distribution Generalizations

Another way to generalize is by changing the distribution. So far, the value ai(j) is

considered uniform on [0, 1]. What if it takes on another distribution?

Recall in Section 1.3 the motivation for looking at coordinate percolation. We

have n programs, each with an infinite list of upgrades, and each upgrade uses

a random amount of system resources. We’ve been assuming that the amount of

system resources needed by any upgrade is given by a uniform random variable on

[0, 1], representing a percentage of the resources of the average system. However,

that an upgrade would change the required percent of resources from 5% to 73%

is difficult to imagine. One way to fix this is to adapt the model. We’d like to be

able to say that program number i will use resources based on some distribution ρi,

or even that all the programs will use resourced based on only one distribution ρ.

This is beyond what we can accomplish at this time. However, for one collection of

related distributions we can give an answer.

Theorem 7.2.1. Suppose αi : N→ [li, li+d] for each 1 ≤ i ≤ n. Define a function cτ

where cτ (α1, α2, . . . , αn) ∈ Fn is the configuration where a vertex v = (v1, v2, . . . , vn)

is open if and only if α1(v1) + α2(v2) + · · · + αn(vn) < τ . Then the probability φ(τ)
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that a uniformly random α = (α1, α2, . . . , αn) maps by cτ to a configuration which

percolates is given by

φ(τ) = θ

(
τ − τ0
d

)
where τ0 =

∑n
i+1 li.

Proof. If αi(j) is uniform in [li, li + d] then ai(j) = (αi(j)− li)/d is uniform in [0, 1]

and α1(v1) +α2(v2) + · · ·+αn(vn) < τ iff a1(v1) + a2(v2) + · · ·+ an(vn) < (τ − τ0)/d.

Therefore, cτ (α) is the same configuration as ft(a) where t = (τ − τ0)/d and a =

(a1, a2, . . . , an). So the probability of percolation for a uniform α is the same as the

probability θ(t) of percolation for a uniform a.

This only supplies the probability of percolation for uniform distributions, and

only when all the directions are allowed to take on values with ranges that are the

same time. The most general probability of percolation would be the probability

that, given a sequence of functions α = (α1, α2, . . . , αn), where αi(j) is a random

variable with distribution function ρi, the configuration σ ∈ F percolates, where

a vertex v = (v1, v2, . . . , vn) is open in σ iff α1(v1) + α2(v2) + · · · + αn(vn) < t.

To answer this question, we would like to use that fact that a random variable

X with probability distribution ρ : R → R is equivalent to the random variable

Y with uniform distribution in [0, 1] given by Y =
∫ X

−∞ ρ(y)dy. This translates

all distributions to the uniform distribution in [0, 1], but doesn’t help because the

condition on open points, namely that α1(v1) + α2(v2) + · · · + αn(vn) < t, does not

translate.

However, if we have a distribution with only one infinite tail, for example the
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exponential distribution, the probability of percolation may be more tractable. In

coordinate percolation with an exponential distribution on the random variables

ai(j), the probability of percolation is 0. This is because for each i there is a ji so that

ai(ji) > t, where t is the given threshold. The vertices with ji as their ith coordinate

are thus closed, forming a closed box containing the origin. This will hold for any

distribution with an infinite tail toward +∞ and not toward −∞. Distributions with

infinite tails toward −∞ and not toward +∞ have not been explored.

7.3 Operation Generalizations

What happens if we allow other operations than addition? For example, given

(a, b) ∈ Ω2, we could define a vertex (i, j) to be open if a(i) ·b(j) < t. This is another

generalization, but can be rephrased as a distribution generalization. For this exam-

ple, the condition a(i)·b(j) < t is equivalent to the condition log a(i)+log b(j) < log t

and, since a distribution on a(i) induces a distribution on log a(i), if we know the

probability of percolation with strange distributions we will know the probability of

percolation with this operation. Therefore, it is reasonable to look for the probabil-

ity of percolation with generalized distributions before looking at the probability of

percolation with generalized operations.
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Notation List

Nn Nonnegative portion of the n-dimensional integer lattice.

l(ϕ) The length of a path ϕ.

ϕ(i) The ith vertex in the path ϕ. Indexing of a path starts at 0.

ϕj(i) The jth coordinate of the ith vertex of the path ϕ.

[n] The set {0, 1, 2, . . . , n− 1}.

Ωn The sample space for coordinate percolation. {(a1, a2, . . . , an)| ai ∈

N→ [0, 1]} with uniform distribution.

valσ(v) a1(v1) + a2(v2) + · · · + an(vn) where v = (v1, v2, . . . , vn) ∈ E(Nn)

and σ = (a1, a2, . . . , an) ∈ Ωn.

Fn The configuration space {σ : E(Nn)→ {0, 1}}.

ft A function Ωn → Fn defined by ft(σ)(v) = 1⇔ valσ(v) < 1 + t.

θ(t) A probability function.

P Sample space for a sample problem (Section 3.1).

P (t) Configuration space for a sample problem (Section 3.1).

ωt Function P → P (t).

Ωt Percolation function Ωn → {0, 1}.

ρt Probability function on the configuration space Fn.
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Ωt(m,n) A set of ordered pairs of functions: a reduced sample space.

A {(m,n, σ)| m,n ∈ N, σ ∈ Ωt(m,n)}: a reduced sample space.

f Percolation preserving function Ω2 → A.

pA The probability distribution for the reduced sample space A.

f̂ The induced percolation map on A.

P (m,n) Percolation probability in a specific case.

ρ Involution of the reduced sample space A.

gt Percolation preserving function Ωt(m,n)→ Sm+n.

Sn Group of permutations on n elements.

rev(a) The reverse of a word a.

ϕT The transpose of a schedule ϕ.

� Worm-order relation symbol.

a+ϕ b The sum word associated with a given schedule ϕ.

a ∨ϕ b The join word associated with a given schedule ϕ.

w(n) The number of worms on the alphabet [n].

Mn The transition matrix at time n.

λn, λn Eigenvalues not equal to 1 of Mn.

Λn,Λn Product of the eigenvalues of M2,M3, . . . ,Mn.

vn, wn Eigenvectors corresponding to eigenvalues λn, λn, respectively, of Mn.

Qn Probability that we are not in the absorbing state after time n.
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backtracking, 27, 29

bond percolation, 2

independent, 2

bone, 30

closed box, 32, 34

closed vertex, 11, 13

cluster size, 6, 17

expected, 17

configuration space, 13, 24, 52
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coordinate percolation, 3, 8, 11, 13, 19,
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collision-based, 3

comparison-based, 4

oriented, 30

critical exponent, 7, 17

critical phenomenon, 6

critical probability, 6, 19

critical threshold, 19, 37

derivative, 57

distribution, 110

does not percolate, 14

exponential distribution, 112

forbidden configuration, 19, 23, 30

fulcrum, 75

geometric distribution, 50, 93

independent percolation, 19

integer lattice, 12, 104

directed, 17

integral equation, 44

join, 30, 81
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maximal chain, 30

meet, 30, 81

modular lattice, 30

non-negative correlation, 88

open cluster, 13, 18

infinite, 13

open line, 18, 32, 39, 40

open path, 13

open vertex, 11, 13

operation, 112

oriented percolation, 18

path, 12

length of, 12

percolates, 14

percolation probability, 14, 52, 93, 99

integral equation, 42

permutation group, 53

phase transition, 6

sample space, 13, 24

schedule, 66

site percolation, 2

independent, 2, 11

sum worm, 76

symmetric group, 87, 95

threshold, 9, 13

transpose schedule, 66

triangular lattice, 108

witness, 67

worm, 71

worm order, 53, 66, 84

worms, number of, 84
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