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Motivating Questions

Is there a way to generalize the cross product?

Is there a quick way to generate inner/cross product identities such
as the triple product?

Why are the trace and determinant functions so special?

What is the “best” way to compute the determinant?

Why do the trace and determinant show up in the characteristic
polynomial?

What’s with this duality thing?
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Theme: notation is useful... but only if we can understand it!
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Symmetries in Linear Algebra

Let u, v, and w represent vectors, and let A represent a matrix.

Symmetries:

The inner product 〈u, v〉 = u · v satisfies 〈u, v〉 = 〈v,u〉;
Since 〈u, v〉 = uTv, it is also true that 〈Au, v〉 = 〈u,ATv〉.
The matrix trace statisfies tr(A) = tr(AT );

Anti-Symmetries:

The cross product satisfies u× v = −v × u;

The matrix determinant satisfies det[u v w] = −det[v u w];

The triple product identity relates these two constructions:

〈u× v,w〉 = det[u v w].
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Tensor Algebra

A tensor product of two vector spaces consists of pairs of elements such
that

(λv,w) = λ(v,w) = (v, λw)

where λ ∈ C. It is usually written v ⊗w.

A multilinear function (one which is linear in each factor) can be thought
of as a function on a tensor product space:

〈λu, v〉 = λ〈u× v〉
(λu)× v = λ(u× v)

det[(λu) v w] = λdet[u v w].

So we could write ·(u⊗ v), ×(u⊗ v), and det(u⊗ v ⊗w) instead.
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3-Vector Diagrams

Suppose the cross product and inner product are represented by

u× v =

u v

and 〈u, v〉 = u v .

Exercise 1. How can you draw the identity

〈u× v,w × t〉 = 〈u,w〉〈v, t〉 − 〈u, t〉〈v,w〉?

Exercise 2. What does this diagram represent?

u vw
=

vwu
=

u vw
=

u vw

Elisha Peterson The ART of Linear Algebra



Introduction
Trace Diagrams

Some Practice
Answers to Questions

Concluding Remarks

3-Vector Diagrams

Suppose the cross product and inner product are represented by

u× v =

u v

and 〈u, v〉 = u v .

Exercise 1. How can you draw the identity

〈u× v,w × t〉 = 〈u,w〉〈v, t〉 − 〈u, t〉〈v,w〉?

Exercise 2. What does this diagram represent?

u vw
=

vwu
=

u vw
=

u vw

Elisha Peterson The ART of Linear Algebra



Introduction
Trace Diagrams

Some Practice
Answers to Questions

Concluding Remarks

3-Vector Diagrams

Suppose the cross product and inner product are represented by

u× v =

u v

and 〈u, v〉 = u v .

Exercise 1. How can you draw the identity

〈u× v,w × t〉 = 〈u,w〉〈v, t〉 − 〈u, t〉〈v,w〉?

Exercise 2. What does this diagram represent?

u vw
=

vwu
=

u vw
=

u vw

Elisha Peterson The ART of Linear Algebra



Introduction
Trace Diagrams

Some Practice
Answers to Questions

Concluding Remarks

Goals of the Talk

Goal

Describe how to create diagrams like these in any dimension, and how to
translate them into traditional notation.

u v

u× v

Diagrams Functions

Goal

Be able to manipulate the diagrams topologically [as graphs], without
worrying about what they represent. Make sure this manipulation doesn’t
change the underlying function.
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What happens if...

Start with a graph with

vertices of degree 1 or n;

edges labelled by matrices,

How do these translate to functions??
How do you even specify inputs/outputs??
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What happens if...

Start with a graph with

vertices of degree 1 or n;

edges labelled by matrices,

A

B

I A B A A

How do these translate to functions??
How do you even specify inputs/outputs??
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Making it Work: Inputs and Outputs

Functions have inputs and outputs, whereas diagrams have degree 1
vertices.

Partition these “leaves” into inputs and outputs.

By convention, inputs are at the bottom, outputs at the top.

Function is from V⊗|I | −→ V⊗|O|, where V = Cn, |I | is the number
of inputs and |O| the number of outputs.

If there are no inputs, the domain is the scalars V = C0 = C.

⇒

}
outputs

}
inputs
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The Subtleties

Problem

According to earlier definitions, A = 〈u,Av〉 = 〈ATu, v〉 while

A = 〈Au, v〉. [They are the same graph.]

Solution: Orient the edges; assume all vertices are sources or sinks.

Problem

v w

= v ⊗w and

wv

= w ⊗ v = −v ⊗w are the same graph.

Solution: Draw a “ciliation” on the graph to specify the order:

implies the ordering 1
2

3

45
.
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The BIG Theorem

Definition

An n-trace diagram is an oriented graph with edges labeled by n × n
matrices whose vertices (i) have degree 1 or n only, (ii) are sources or
sinks, and (iii) are ciliated.

AA A. .

B

Theorem

The function of a trace diagram is well-defined; in particular, every
decomposition into simpler maps gives the same function.
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Making it Work: Translation

Let v represent a vector in Cn, and let A represent an n × n matrix.

Identity Rule: : v 7→ v;

Cup Rule: : 1 7→ ê1 ⊗ ê1 + · · ·+ ên ⊗ ên;

Cap Rule: : v ⊗wT 7→ 〈v,w〉;

Vertex Rule: . .
n

: v1 ⊗ · · · ⊗ vn 7→ det[v1 · · · vn];

Matrix Rule: A : v 7→ Av, A : vT 7→ vTA.
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Cap Rule: : v ⊗wT 7→ 〈v,w〉;

Vertex Rule: . .
n

: v1 ⊗ · · · ⊗ vn 7→ det[v1 · · · vn];

Matrix Rule: A : v 7→ Av, A : vT 7→ vTA.

Elisha Peterson The ART of Linear Algebra



Introduction
Trace Diagrams

Some Practice
Answers to Questions

Concluding Remarks

Making it Work: Translation

Let v represent a vector in Cn, and let A represent an n × n matrix.

Identity Rule: : v 7→ v;
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Example: Kinks

Problem. Compute the function corresponding to .

Solution.

Input and output are both V = Cn;

Use decomposition =
( )

◦
( )

to compute:
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=
∑

i

vi êi = v .
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The Binor Identity

Compute for 2× 2 matrices.

First, decompose it = ◦ .

Second, use the fact that : 1 7→ ê1 ⊗ ê2 − ê2 ⊗ ê1 to compute:

v ⊗w 7−→ det[v w] = v1w2 − v2w1

7−→ (v1w2 − v2w1)(ê1 ⊗ ê2 − ê2 ⊗ ê1)

= v ⊗w −w ⊗ v.

This proves the binor identity:

= − .
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Caps and Cups

We already know how to compute . .
n

, but what about . .n ?

Proposition

. .n : 1 7→
∑
σ∈Σn

sgn(σ)êσ(1) ⊗ · · · ⊗ êσ(n).
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Generalizing the Cross Product

Given that the cross product in three dimensions is

u× v =

u v

,

the natural extension to n dimensions is a product of n − 1 vectors:

u1 × · · · × un−1 =

u1 ui un−1

.. . . .
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3-Vector Identities

The simplest identity is trivial:

u vw
=

vwu
=

u vw
=

u vw
.

Four-vector identities depend on the relation = − .
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Importance of Trace and Determinant

A closed diagram represents a function C→ C, or a function from a
product of matrices to C.

The diagrams for trace and determinant are the simplest closed diagrams:

tr(A) = A

and

det(A) = A A A
. . .
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Computing the Determinant

Three techniques for computing the determinant:

A A A
. . =

1 2 3

AAA

1 2 3

+

1 2 3

AAA

1 2 3

+

1 2 3

AAA

1 2 3

−
1 2 3

AAA

1 2 3

−
1 2 3

AAA

1 2 3

−
1 2 3

AAA

1 2 3

=
1

2


ê1

A

ê1

A A +

ê2

A

ê2

A A +

ê3

A

ê3

A A



=
1

4
ê2

ê2

A AA A

/
ê2

A

ê2

Which is the direct method? cofactor expansion? Dodgson condensation?
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The Characteristic Polynomial

The easy answer to why tr(A), det(A) are part of the characteristic
polynomial: they are the sum and product of the eigenvalues.
Diagrammatically, the n coefficients of the polynomial are the n
“simplest” diagrams.

Expand det(A + B) in terms of diagrams:

det(A + B) =
1

n!

n∑
i=0

(
n
i

)
A A

..
n − i B B

..
i

.

Applying to the case det(A− λI) gives:

det(A− λI) =
1

n!

n∑
i=0

(
n
i

)
(−1)iλi

A A
..

n − i
..
i

.
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Duality

From a diagram’s point-of-view:

Inputs and outputs are “artificial”;

Switching orientations corresponds to transposing the whole
calculation.
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Lineage of Trace Diagrams

Ancestors:

Euler: graph theory

Frege: Begriffsschrift c. 1890

Feynman: Feynman diagrams

Penrose: spin networks

Early sources:

Stedman: group theory

Cvitanovic: ‘bird tracks’

Siblings:

Kauffman: Kauffman bracket

IHX, STU Relations

Kuperberg Spiders/Webs
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Application to Invariant Theory

A similarity transformation of a matrix is A 7→ BAB−1 for some
nonsingular matrix B.

Both tr(A) and det(A) are invariant under this transformation:
tr(A) = tr(BAB−1 and det(A) = det(BAB−1).

Diagrams labeled by several matrices are invariant under this
transformation if the same matrix B is used for all transformations.
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Application to Invariant Theory

One aspect of Invariant Theory is the classification of functions M×r → C
invariant under this simultaneous transformation. Often, the invariants
can be linearly reduced to a few simple invariants.
For example, 2× 2 matrices satisfy:

A2 = tr(A)A + det(A)I,

and so
tr(A2) = tr(A)2 + 2det(A).

For this reason, if there is only one matrix, tr(A) and det(A) are the
simplest invariants.
Major Open Question: Achieve a complete understanding of all
invariants of k n × n matrices (usually, restricted to either the nonsingular
matrices or those with determinant 1).
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http://chaosbook.org/GroupTheory/

Elisha Peterson The ART of Linear Algebra


	Introduction
	Trace Diagrams
	Some Practice
	Answers to Questions
	Concluding Remarks

