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Signed Graph Coloring

of trace diagram

Definition

An n-trace diagram is an oriented graph such that:
@ vertices have degree n (if not leaves)
@ all vertices sources or sinks

@ edges at a vertex are ordered

How to define a trace diagram
signature:

@ Color the edges by n
colors so that each color
at a vertex is different

@ Multiply signatures of
permutations at nodes

sgn(1342)-sgn(2413)=—-1
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g a Function to a Diagram

© Divide leaves into inputs and outputs
@ Mark input leaves (at bottom) by n-dimensional basis vectors

© Sum over labels of output leaves (at top) for all admissible colorings
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Signed Graph Coloring

> a Function to a Diagram

© Divide leaves into inputs and outputs
@ Mark input leaves (at bottom) by n-dimensional basis vectors

© Sum over labels of output leaves (at top) for all admissible colorings

What is the function ;\? Consider the input (&1,8&) = (i,}):

output— é;

inputs— & > (i,j)

sgn(123) = +1
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Signed Graph Coloring

> a Function to a Diagram

© Divide leaves into inputs and outputs
@ Mark input leaves (at bottom) by n-dimensional basis vectors

© Sum over labels of output leaves (at top) for all admissible colorings

What is the function ;\? Consider the input (&1,8&) = (i,}):

output— &; k & —k
h : /R 3
inputs— & > (1,1) 5 & (1)
sgn(123) = +1 sgn(213) = -1
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Signed Graph Coloring

> a Function to a Diagram

© Divide leaves into inputs and outputs
@ Mark input leaves (at bottom) by n-dimensional basis vectors

© Sum over labels of output leaves (at top) for all admissible colorings

What is the function ;\? Consider the input (&1,&) = (i,):

output— é; k &3 —k
h : A
inputs— & > (1,1) 5 & (1)
sgn(123) = +1 sgn(213) = -1

It's the cross product!!
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Signed Graph Coloring

diagrams with matrices

Matrix markings denote matrix multiplication:

j &
g@: éjAé,' = r = ajj
i A&;

Example

@ There are no vertices,
hence n colorings

i

_ Z% @ If the edge is colored by i,
R the diagram is aj;

]
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Signed Graph Coloring

lagrams with matrices

Matrix markings denote matrix multiplication:

j &
%‘): éjAé,' = r = ajj
i A&;

Example

@ There are no vertices,
hence n colorings

_ Z% = tr(A) @ If the edge is colored by i,
R the diagram is a;;

@ Sum over all colorings:
a1+ + 3 = tr(A)
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The Art of Linear Algebra

ou generalize the cross product??

How do you generalize the diagram?

Answer: The cross product generalizes to “products” of n — 1 vectors
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The Art of Linear Algebra

ou generalize the trace and the determinant??

Both are invariants that “output” a scalar:

tr(ABA™1) =tr(B)  det(ABA™!) = det(B)

What are the simplest “closed” diagrams?

tr(A) o tr(A) n — 2 more o det(A)

Answer: These are the coefficients of the characteristic polynomial.

Steven Morse and Elisha Peterson



The Art of Linear Algebra
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How are the determinant and cross product related?
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The Art of Linear Algebra

prove anything with diagrams?

How are the determinant and cross product related?

(uxv) w det(u v w)

“Triple product formula”
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A Theorem of Jacobi

eorem for matrix minors

Theorem (Jacobi)

[adi(A)l1,s = [A]" " - [Alje se

e Ais a matrix, [A] = det(A)

@ [A]; s is the minor (determinant of the submatrix formed from the set
of m rows | and the set of m columns J)

@ adj(A) is the adjugate (matrix of (n — 1) x (n — 1) minors)

I=J={1,2}, m=2:

m—1
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A Theorem of Jacobi

eorem for matrix minors

Theorem (Jacobi)

[adi(A)l1,s = [A]" " - [Alje se

e Ais a matrix, [A] = det(A)

@ [A]; s is the minor (determinant of the submatrix formed from the set
of m rows | and the set of m columns J)

@ adj(A) is the adjugate (matrix of (n — 1) x (n — 1) minors)

I=J={1,2}, m=2:
m—1
2 1 -1 —4
1 -2 -1 -6 X’z 4‘
-1 -1 2 4 -3 -8
2 1 -3 -8
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A Theorem of Jacobi

eorem for matrix minors

Theorem (Jacobi)

[adi(A)l1,s = [A]" " - [Alje se

e Ais a matrix, [A] = det(A)

@ [A]; s is the minor (determinant of the submatrix formed from the set
of m rows | and the set of m columns J)

@ adj(A) is the adjugate (matrix of (n — 1) x (n — 1) minors)

I=J={1,2}, m=2:
[adj(A)]1,4
-2 -1 -6 2 1 -1 —4 "
—11 23 48 |- - 1 -2 _1 —6 X‘z 4‘
-1 -1 2 4 -3 -8
|- |- 2 1 -3 -8 Alie
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Diagram Rules
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Proof of [adj(A)];s = [A]™ ! - [A]/c.c (Morse)

Diagram Rules
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Proof of [adj(A)];s = [A]™ ! - [A]/c.c (Morse)

Diagram Rules

-‘@V“'\ adj(A)o< [A]"J“

OROBAVE Jb " I

hb  Im

Jbo Im
[adj(A)]1,y




A Theorem of Jacobi

Proof of [adj(A)];s = [A]™ ! - [A]/c.c (Morse)

Diagram Rules

g5 I m
W I [Alse, ge
[adj(A)]1,
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A Theorem of Jacobi

e Stedman, Group Theory

@ Predrag Cvitanovic, Group Theory,
http://chaosbook.org/GroupTheory/
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