
Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

Trace Diagram Recurrences and Central Functions of
SL(2, C)-Character Varieties

AMS Special Session on Geometry, Algebra, and Topology of Character
Varieties

Elisha Peterson
(joint with Sean Lawton)

United States Military Academy

January 8, 2009

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

Character Varieties and their Coordinate Rings

Definition

The coordinate ring of a character variety X = Hom(π,G )//G is the ring
of invariants C[Hom(π,G )]G .

This talk concerns a certain basis of functions for C[X] when
G = SL(2,C) and π is a free group, in which case C[X] is comprised of
regular (polynomial) functions that satisfy

f (A,B, . . .) = f (XAX−1,XBX−1, . . .).
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Examples for G = SL(2, C )

π free of rank 1:

C[X] ∼= C[x ] and so can be written in terms of polynomials of one
variable

{1, x , x2, x3, . . .} comprises an additive basis

π free of rank 2:

C[X] ∼= C[x , y , z ] and so can be written in terms of polynomials of
three variables (Fricke,Klein,Vogt)

{1, x , y , z , xy , yz , xz , . . .} comprises an additive basis

π free of rank 3: not quite so simple!
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Computing an Additive Basis using the Peter-Weyl Theorem

Theorem (Corollary of Peter-Weyl)

For a reductive linear algebraic group G, the coordinate ring C[G ]
decomposes:

C[G ] ∼=
⊕
λ∈Λ

V ∗λ ⊗ Vλ,

where Λ is the set of irreducible representations (of the maximal compact
subgroup U ⊂ G ), and the isomorphism is given by

v∗ ⊗ w 7→ (x 7→ v∗(x · w)) .

For G = SL(2,C), the irreducible representations are V0,V1,V2, . . ., the
symmetric powers of the standard representation.
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The Rank One Case

If π is free of rank 1, Hom(π,G ) ∼= G and so C[X] ∼= C[G ]G .

By Schur’s Lemma, (V ∗n ⊗ Vn)G has dimension 1, so

C[G ]G ∼=
⊕
n∈N

(V ∗n ⊗ Vn)G ∼=
⊕

n

Cχn

For a basis {vi} of Vn:

v∗ ⊗ w 7→ tr(x 7→ v∗(x · w)) =
∑

i

v∗i (x · vi ).

In terms of the trace tr(X ), the functions χn are the Chebyshev
polynomials of the second kind:

χ0 = 1, χn = x · χn−1 − χn−2.

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

The Rank One Case

If π is free of rank 1, Hom(π,G ) ∼= G and so C[X] ∼= C[G ]G .

By Schur’s Lemma, (V ∗n ⊗ Vn)G has dimension 1, so

C[G ]G ∼=
⊕
n∈N

(V ∗n ⊗ Vn)G ∼=
⊕

n

Cχn

For a basis {vi} of Vn:

v∗ ⊗ w 7→ tr(x 7→ v∗(x · w)) =
∑

i

v∗i (x · vi ).

In terms of the trace tr(X ), the functions χn are the Chebyshev
polynomials of the second kind:

χ0 = 1, χn = x · χn−1 − χn−2.

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

The Rank One Case

If π is free of rank 1, Hom(π,G ) ∼= G and so C[X] ∼= C[G ]G .

By Schur’s Lemma, (V ∗n ⊗ Vn)G has dimension 1, so

C[G ]G ∼=
⊕
n∈N

(V ∗n ⊗ Vn)G ∼=
⊕

n

Cχn

For a basis {vi} of Vn:

v∗ ⊗ w 7→ tr(x 7→ v∗(x · w)) =
∑

i

v∗i (x · vi ).

In terms of the trace tr(X ), the functions χn are the Chebyshev
polynomials of the second kind:

χ0 = 1, χn = x · χn−1 − χn−2.

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

The Rank One Case

If π is free of rank 1, Hom(π,G ) ∼= G and so C[X] ∼= C[G ]G .

By Schur’s Lemma, (V ∗n ⊗ Vn)G has dimension 1, so

C[G ]G ∼=
⊕
n∈N

(V ∗n ⊗ Vn)G ∼=
⊕

n

Cχn

For a basis {vi} of Vn:

v∗ ⊗ w 7→ tr(x 7→ v∗(x · w)) =
∑

i

v∗i (x · vi ).

In terms of the trace tr(X ), the functions χn are the Chebyshev
polynomials of the second kind:

χ0 = 1, χn = x · χn−1 − χn−2.

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

Definition
Diagrammatic Construction of Central Functions
Trace Diagrams and the Diagrammatic Basis

Definition of Central Functions

The following is a consequence of the Peter-Weyl Theorem:

Theorem (Central Function Decomposition)

The coordinate ring of the character variety C[X] can be written

C[X] ∼=
⊕
~λ,ψ,φ

Cχψ,φ~λ
,

over particular injections ψ, φ into a tensor product of representations
Vλ1 ⊗ · · · ⊗ Vλr .

Definition (Central Functions)

The central functions of the G -character variety χ are the functions χψ,φ~λ
in the above decomposition.
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Proof of the Central Function Decomposition

Proof.

When a surface Σ has fundamental group free of rank r , the isomorphism
C[Hom(π,G )] ∼= C[G×r ] ∼= C[G ]⊗r and the previous result give:

C[X] ∼=
(
C[G ]⊗r

)G ∼= (⊗
r

⊕
λ∈Λ

V ∗λ ⊗ Vλ

)G

∼=
⊕

(λ1,...,λr )∈Λr

((
V ∗λ1
⊗ · · · ⊗ V ∗λr

)
⊗ (Vλ1 ⊗ · · · ⊗ Vλr )

)G
.

Schur’s Lemma and G -invariance permit a reduction to the desired form:

C[Xr ] ∼=
⊕
~λ∈Λr

⊕
ψ=φ∈d~λc

Cχψ,φ~λ
.
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The Diagrammatic Basis

Steps to the Diagrammatic Representation.
1 Represent Cχλ diagrammatically.
2 Represent the injections Vψ,Vφ ↪→ Vλ1 ⊗ · · · ⊗ Vλr diagrammatically.
3 Combine the injections, the G×r -action, and the trace property.
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The Diagrammatic Basis

Steps to the Diagrammatic Representation.
1 Represent Cχλ diagrammatically.

The isomorphism V ∗λ ⊗ Vλ ∼= Cχλ is defined for a basis {vi} of
Vλ by

v∗ ⊗ w 7→ tr(x 7→ v∗(x · w)) =
∑

i

v∗i (x · vi ).

The corresponding diagram is Cχλ =

λ

x .

2 Represent the injections Vψ,Vφ ↪→ Vλ1 ⊗ · · · ⊗ Vλr diagrammatically.
3 Combine the injections, the G×r -action, and the trace property.
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The Diagrammatic Basis

Steps to the Diagrammatic Representation.
1 Represent Cχλ diagrammatically.
2 Represent the injections Vψ,Vφ ↪→ Vλ1 ⊗ · · · ⊗ Vλr diagrammatically.

Each such injection corresponds to a term in the decomposition
of this tensor product into irreducible elements.

Vλ1 Vλ2 Vλ3 Vλ4

Vψ

Vα

Vβ

In this diagram, each node represents an injection Vα ↪→
Vβ ⊗ Vγ , and the tree gives a well-defined way to perform this
decomposition.

3 Combine the injections, the G×r -action, and the trace property.Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences
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Steps to the Diagrammatic Representation.
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Central Functions on Arbitrary Surfaces

How do you construct these invariant functions (which live in
C[Hom(π,G )]G )?

−→ −→
A B
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General Form of Central Functions

For this talk, we choose central functions of the form

A ,
A B

, A B C , . . .

corresponding to π of rank 1, 2, 3, . . .

The set of diagrams of one type with admissible labelings comprises a
basis for C[X].
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Trace Diagrams and Spin Networks

A diagrammatic calculus for manipulating these functions already exists...
spin networks!

λ1 λ2

λ3

λ4 λ5

A B C

Strands correspond to representations of SL(2,C)

Vertices correspond to Clebsch-Gordan injections or projections

Closed diagrams are functions G × G × · · · × G → C
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Spin Network Relations I

Define Θ(a, b, c) = b
a c

and ∆(c) =
c

.

Proposition (Bubble, Fusion Relations)

a b

c

d

=
Θ(a, b, c)

∆(c)

c

δc,d

a b

=
∑

c∈da,bc

∆(c)

Θ(a, b, c) a b
c

a b

where da, bc = {|a− b|, |a− b|+ 2, . . . , a + b} is the set of values for
which injections Vc → Va ⊗ Vb exist.
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Spin Network Relations II: Recoupling

Definition

The 6j -symbols are the coefficients in the following change-of-basis
equation:

d

a
e

b c

=
∑

f ∈da,bc∩dc,dc

[
a b d
c e f

]
d

c

f
ba

.

Proposition (Gluing Identity)

b

c a1

=
∑

a′∈d1,ac
c ′∈d1,cc

Fb

(
a′ c ′
a c

)
b

c ′
c 1

a′
1 a

.

(This is an alternate normalization of the 6j-symbol.)
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The Simple Recurrence Formulas

Theorem

Let a denote a− 1 and let γ be a loop along the trace diagram, and let
sγ(ai ) denote the trace diagram with labels ai along the loop γ. Then

sγ(ai ) = γ · sγ(ai )
−

∑
{a′i =ai±1}
some a′i 6=ai

(
n∏

i=1

±F̂bi

(
a′i−1 a′i
ai−1 ai

))
sγ(a′i )

. (1)

Proof.

1

bn
b1

b2

b3
b4

b5

a1

a2

a3

a4a5

a6

.
. .

−→

a1

a2

a3

a4a5

a6

bn
b1

b2

b3
b4

b5

.
. .

−→

a1

a2

a3

a4a5

a6

b′n
b′1

b′2

b′3
b′4

b′5

.
. .
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A Concrete Example

Example

1
a

b

= F̂b ( a a
a a ) a + 1

b

− F̂b ( a a
a a ) a

b

= a + 1

b

+
(a− b

2
)(a+ b

2
+1)

a(a+1) a

b

.

(2)
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Rank Two Recurrences

There are three simple loops in the rank two case, corresponding to
multiplication by tr(AB−1), tr(A), and tr(B):

A

a
B

b c

A B1
A

a
Bb

c
B1 Aa B

bc
A 1

Theorem (Rank Two Recursion)

χ̂α,β,γ = x · acχ̂α,β,γ − γ2χ̂α,β,γ − α2χ̂α,β,γ − δ2(β − 2)2χ̂α,β,γ .
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Rank Two: Table

x3 − 2xy 3 − 2y

z3 − 2z

x2y − 2
3 (y + xz)xy 2 − 2

3 (x + yz)

x2z + ...

xz2 + ...

y 2z + ...

yz2 + ...

xyz − 1
2 (x2 + y 2 + z2) + 1

x2 − 1y 2 − 1

z2 − 1

xy − 2z

xz − 2yyz − 2x

xy

z

1 δ = 0

δ = 1

δ = 2

δ = 3
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Rank Three Central Functions

Definition

The rank three central functions for C[X3] are:

χa,b,c
d ,e,f (A,B,C ) = A B C

e

a b
d c f

,

where the triples {a, b, d}, {a, b, e}, {c, d , f }, and {c , e, f } are all
admissible.

There are six simple loops, but also a non-simple loop:

X Y ZX Y Z
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The Barbell

Proposition

Y

a

c
b

X

Z

=
∑

a′=a±1
b′=b±1
c ′=c±1
b′′=b′±1

±F̂a

(
a′ b′
a b

)
F̂c

(
c ′ b′
c b

)
F̂a′
(

a′ b′′

a b′

)
F̂c ′
(

c ′ b′′

c b′

)
Y

a′

c ′

b′′

X

Z

.

Proof.

a

c
b
−→

∑
a

c

a′
c ′ b′

−→
∑

a

c

a′
c ′

a′
c ′

b′′ −→
∑

b′′
a′

c ′

−→
∑

b′′
a′

c ′
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The General Case

χ~d ,~e,~f ≡
X1

d0

X2

d1

f1

X3

d2

e1

f2

e2

. . .

. . .

fr−2

Xr

dr−1

er−2

dr
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...

What else can you do with spin network relations?

Proposition (Rank One Product)

χa · χb =
∑

c∈da,bc

χc .

Proof.

The relation
a b

=
∑

c∈da,bc

(
∆(c)

Θ(a,b,c)

)
a

a
b
c

b
implies

A
a

A
b

=
∑

c∈da,bc

(
∆(c)

Θ(a, b, c)

)
A A

a b c

.

Pull the matrix through the node and apply the bubble identity:

χaχb =
∑

c∈da,bc

(
∆(c)

Θ(a, b, c)

)(
Θ(a, b, c)

∆(c)

)
A

c

.
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What else can you do with spin network relations?

Theorem (Rank Two Product)

χa,b
c χa′,b′

c ′ =
∑

j1,j2,k,l ,m

Cj1,k,l ,mCj2,k,l ,m
Θ(a,a′,k)Θ(b,b′,l)Θ(c,c ′,m)

∆(k)∆(l)∆(m) χl ,m
k

Idea of Proof.

A B
a b

c

A B
a
′ b ′ c ′

−→ A BA B
a ba
′ b ′

−→ A BA B −→ A B

k l m
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Questions??

References:

Baez, Spin networks in gauge theory, Adv. Math. (1996)

Sikora, SL(n)-character varieties as spaces of graphs, Trans. AMS
(2001)

Carter/Flath/Saito, The Classical and Quantum 6j -Symbols

Lawton/Peterson, Spin networks and SL(2,C)-character varieties,
arXiv:math/0511271 (to appear, Handbook of Teichmüller Theory
Vol II)

Current work begun at KAIST Geometric Topology Fair, Summer
2007; preprint coming soon.
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Generalizations

There are two obvious generalizations:

Beyond rank two: work underway;

Beyond SL(2,C): requires new ideas since crossings cannot be
removed very easily; will be much harder!
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Rank Three: Sample Computation

Example

Compute χ1,1,1
0,2,1 = A B C

2

1 1
0 1 1

.
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Rank Three: Partial Table

The interesting cases are when a, b, c 6= 0; otherwise, the functions reduce
to rank two central functions. Also, either d 6= 0 or e 6= 0; otherwise, the
diagram is disconnected.

Let x = tr(A), y = tr(B), z = tr(C ), X = tr(BC̄ ), Y = tr(AC̄ ), and
Z = tr(AB̄).
Case a = b = c = 1:

χ1,1,1
0,2,1 = 1

2 zZ − X

χ1,1,1
2,0,1 = 1

2 zZ − [AC B̄]

χ1,1,1
2,2,1 = xX − 1

2 (X + [AC B̄]) + 1
4 zZ

χ1,1,1
2,2,3 = xyz − 2

3 (zZ + xX ) + 1
3 (X + [AC B̄]).

Case a = b = c = 2:

χ2,2,2
2,2,2 = xXzZ − 1

2 (xyZ + xYz + Xyz + XYZ + XzZ ) + 1
4 (x2 + X 2 +

y 2 + Y 2) + 1
2 (z2 + Z 2) + 1

4 z2Z 2 − 1
2 zZ [AC B̄]− 1

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

...

Rank Three: Partial Table

The interesting cases are when a, b, c 6= 0; otherwise, the functions reduce
to rank two central functions. Also, either d 6= 0 or e 6= 0; otherwise, the
diagram is disconnected.

Let x = tr(A), y = tr(B), z = tr(C ), X = tr(BC̄ ), Y = tr(AC̄ ), and
Z = tr(AB̄).
Case a = b = c = 1:

χ1,1,1
0,2,1 = 1

2 zZ − X

χ1,1,1
2,0,1 = 1

2 zZ − [AC B̄]

χ1,1,1
2,2,1 = xX − 1

2 (X + [AC B̄]) + 1
4 zZ

χ1,1,1
2,2,3 = xyz − 2

3 (zZ + xX ) + 1
3 (X + [AC B̄]).

Case a = b = c = 2:

χ2,2,2
2,2,2 = xXzZ − 1

2 (xyZ + xYz + Xyz + XYZ + XzZ ) + 1
4 (x2 + X 2 +

y 2 + Y 2) + 1
2 (z2 + Z 2) + 1

4 z2Z 2 − 1
2 zZ [AC B̄]− 1

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

...

Rank Three: Partial Table

The interesting cases are when a, b, c 6= 0; otherwise, the functions reduce
to rank two central functions. Also, either d 6= 0 or e 6= 0; otherwise, the
diagram is disconnected.

Let x = tr(A), y = tr(B), z = tr(C ), X = tr(BC̄ ), Y = tr(AC̄ ), and
Z = tr(AB̄).
Case a = b = c = 1:

χ1,1,1
0,2,1 = 1

2 zZ − X

χ1,1,1
2,0,1 = 1

2 zZ − [AC B̄]

χ1,1,1
2,2,1 = xX − 1

2 (X + [AC B̄]) + 1
4 zZ

χ1,1,1
2,2,3 = xyz − 2

3 (zZ + xX ) + 1
3 (X + [AC B̄]).

Case a = b = c = 2:

χ2,2,2
2,2,2 = xXzZ − 1

2 (xyZ + xYz + Xyz + XYZ + XzZ ) + 1
4 (x2 + X 2 +

y 2 + Y 2) + 1
2 (z2 + Z 2) + 1

4 z2Z 2 − 1
2 zZ [AC B̄]− 1

Elisha Peterson (joint with Sean Lawton) Trace Diagram Recurrences



Introduction
Central Functions and their Diagrams

Trace Diagram Recurrences
Conclusion

...

Central Functions and Surface Structure

Question. How can trace diagrams take into account the structure of the
surface as well as its fundamental group?

Partial Answer. Use the Poisson structure!

Definition

The Goldman bracket {f , g} of two loops on a surface is the sum over all
essential intersections of the following:

f g → −

This bracket satisfies the Jacobi and Leibniz identities, and so gives
the ring a Poisson structure.

The bracket is simply the application of the binor identity

= − to the essential crossings in a diagram.
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Central Functions and Lie Algebras

Question. Can the theory of central functions be developed using Lie
algebras rather than Lie groups?

Answer. Yes... I think! One interesting fact is that there is a nice
diagram for transforming a matrix X ∈ SL(2,C) into a matrix
x ∈ sl(2,C), since the result necessarily has trace 0. This is the mapping

X 7→ X 1
2tr(X )I . Such diagrams are the primary “building blocks” of one

type of central function:

A

B

C
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Central Functions and Quantum Groups

Question. How does this all relate to knot theory and quantum groups?
Answer.

Central functions are very closely related to the theory obtained from
“quantizing” crossings. The correspondence is exact in rank one.

Is there a quantum version of central functions?

The quantization of the trace diagram algebra is the Kauffman
Bracket Skein Module of a surface.
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