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Introduction
Fundamental Group Representations and the Coordinate Ring

Motivation |

Every representation p € Hom(w, G)

where G = SL(2,C) induces a map

m — C given by taking the trace of m C [G”]G = Cl[x]
p(x). These elements are X | — tr(p(x))
conjugation-invariant and reside in

both C[G*"]® and the coordinate ring

of the character variety.
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Introduction

Fundamental Group Representations and the Coordinate Ring

Motivation |

Every representation p € Hom(w, G)

where G = SL(2,C) induces a map

m — C given by taking the trace of m C [G”]G = Cl[x]
p(x). These elements are X | — tr(p(x))
conjugation-invariant and reside in

both C[G*"]® and the coordinate ring

of the character variety.

For this reason, the study of the structure of
the character variety and its coordinate ring

often boils down to examining trace relations
Q [described in detail in Lawton’s first talk].
This talk will describe a more geometric way to
‘ discuss trace relations.
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Fundamental Group Representations and the Coordinate Ring

Motivation |

Every representation p € Hom(m, G)

where G = SL(2,C) induces a map

m — C given by taking the trace of m C [G”]G = Cl[x]
p(x). These elements are X | g =5 tr(p(x))
conjugation-invariant and reside in \??/

both C[G*"]® and the coordinate ring ?

of the character variety.

For this reason, the study of the structure of
the character variety and its coordinate ring

often boils down to examining trace relations
Q [described in detail in Lawton’s first talk].
This talk will describe a more geometric way to
‘ discuss trace relations.
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Introduction

Fundamental Group Representations and the Coordinate Ring

Motivation |l

We will develop an algebra which reflects both the structure arising from
the fundamental group and that arising from its representation.
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Introduction

Fundamental Group Representations and the Coordinate Ring

Motivation |l

We will develop an algebra which reflects both the structure arising from
the fundamental group and that arising from its representation.

We call the requisite algebra the Trace Diagram Algebra T2, whose
elements are a special class of graphs marked by elements of SL(2, C).

™ cr6xn®

X | x)) =Gg(t
/\Q_ﬂ/g/ﬁp( ) (t)

= F(x)
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Introduction

Fundamental Group Representations and the Coordinate Ring

Motivation |l

We will develop an algebra which reflects both the structure arising from
the fundamental group and that arising from its representation.

We call the requisite algebra the Trace Diagram Algebra T2, whose
elements are a special class of graphs marked by elements of SL(2, C).

™ ClG*n°

The purpose of this talk is to describe F and G, hence providing an
alternate category for studying the coordinate ring of the character variety.
This alternate category simplifies many calculations, and provides greater
intuition for both trace polynomials and their connection with the
character variety.
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. . . Defining the Functor G
Trace Diagrams and Their Properties efining the unrﬁ e

Outline

@ Introduction
@ Fundamental Group Representations and the Coordinate Ring

9 Trace Diagrams and Their Properties
@ Defining the Functor G
@ Trace Diagram Relations
@ Computing Trace ldentities

© Structure of the Coordinate Ring
@ The Functor F
@ Surfaces and Character Varieties
@ Beyond Rank Two

@ Central Functions
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Defining the Functor G
gram Relations
ce ldentities

Trace Diagrams and Their Properties

Definition of Trace Diagrams

Definition

A 2-trace diagram t € T, is a graph drawn in a box whose edges are
marked by matrices in M>.». All vertices have degree one and occur at
the bottom of the box (inputs), or at the top of the box (outputs). The
diagrams are in general position relative to a certain “up” direction.
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Defining the Functor G
gram Relations
ce ldentities

Trace Diagrams and Their Properties

Definition of Trace Diagrams

Definition

A 2-trace diagram t € T, is a graph drawn in a box whose edges are
marked by matrices in M>.». All vertices have degree one and occur at
the bottom of the box (inputs), or at the top of the box (outputs). The
diagrams are in general position relative to a certain “up” direction.

i ©
LD
Note. A= A"!
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Definition of Trace Diagrams

Definition

A 2-trace diagram t € T, is a graph drawn in a box whose edges are
marked by matrices in M>.». All vertices have degree one and occur at
the bottom of the box (inputs), or at the top of the box (outputs). The
diagrams are in general position relative to a certain “up” direction.
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Trace Diagrams and Their Properties D_e,f"tmg the, IFumeizer &
ace g Relations

ce ldentities

Definition of Trace Diagrams

Definition

A 2-trace diagram t € T, is a graph drawn in a box whose edges are
marked by matrices in M>.». All vertices have degree one and occur at
the bottom of the box (inputs), or at the top of the box (outputs). The
diagrams are in general position relative to a certain “up” direction.

We use general position to mean the following:

@ Each strand is an embedding;
@ ® @) O @ Crossings and matrix markings are disjoint from
local extrema;

N\ Q @ Diagrams are equivalent if isotopic, provided the
) previous condition remains true and local extrema

are neither added nor removed.
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. . . Defining the Functor G
Trace Diagrams and Their Properties Trace Di Relations

Computing Trace Identities

Definition of Trace Diagrams

Definition

A 2-trace diagram t € T, is a graph drawn in a box whose edges are
marked by matrices in M>.». All vertices have degree one and occur at
the bottom of the box (inputs), or at the top of the box (outputs). The
diagrams are in general position relative to a certain “up” direction.

We use general position to mean the following:

@ Each strand is an embedding;

@ @@‘ O @ Crossings and matrix markings are disjoint from

local extrema;

2\ Q @ Diagrams are equivalent if isotopic, provided the
previous condition remains true and local extrema
Note. A = A-1. are neither added nor removed.

Diagrams with compatible inputs/outputs may be composed by placing
one atop another. This corresponds to composition of functions.
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Defining the Functor G
Trace Di elations
Computing Trace Identities

Trace Diagrams and Their Properties

The Trace Diagram Functor

First we will construct, for V = C2 the standard representation of
SL(2,0C),
To S Fn(Ve - @V Ve V),

i o

where / is the number inputs and o the number of outputs.

NS

g 0@?‘ . Y83, y®s

A @
c—
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Component Decomposition of Trace Diagrams

The functor G(t) for a given trace diagram t will be defined by piecing
together the action of G on smaller components.
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Defining the Functor G
Trace Di elations
Computi ace |dentities

Trace Diagrams and Their Properties

Component Decomposition of Trace Diagrams

The functor G(t) for a given trace diagram t will be defined by piecing
together the action of G on smaller components.

Proposition

Every strand of a trace diagram may be uniquely decomposed into the

components |, ><, @, () and( ).
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Defining the Functor G
Trace Di elations
Computi ace |dentities

Trace Diagrams and Their Properties

Component Decomposition of Trace Diagrams

The functor G(t) for a given trace diagram t will be defined by piecing
together the action of G on smaller components.

Proposition

Every strand of a trace diagram may be uniquely decomposed into the

components |, ><, @, () and( ).

m?‘

Uniqueness comes from our restriction on “general position.”
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Component Maps

Given v,w € C2, A € Moy, and the standard basis {e;, &} of C?,
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Component Maps

Given v,w € C2, A € Moy, and the standard basis {e;, &} of C?,

o Identity G <|) :V -V takes vi— v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Component Maps

Given v,w € C2, A € Moy, and the standard basis {e;, &} of C?,
o Identity G <|) V-V takes v— v

o Group Action G (@) V-V takes v Av
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Component Maps

Given v,w € C2, A € Moy, and the standard basis {e;, &} of C?,
o Identity G <|) V-V takes v— v
@ Group Action G (@) :V =V takes ve— Av

@ Permutations g(X):V®V—>V®V takes vQwm— w®v

v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Component Maps

Given v,w € C2, A € Moy, and the standard basis {e;, &} of C?,
o Identity G <|) V-V takes v— v
o Group Action G (@) V=V takes vi— Av
@ Permutations § (><) VeV -=VeV takes vOw—w®v

e1®e — 0

1

o “Cap” g(ﬂ) VeV —C takes e+
eo®e — —1

e®e—0
ora® b — det[a b]

v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Component Maps

Given v,w € C2, A € Moy, and the standard basis {e;, &} of C?,

o Identity G <|) V-V takes v— v
@ Group Action G (@) :V =V takes ve— Av
@ Permutations g(X) VRV —-V®V takes vRwmr— w®v

e1®e — 0

1

o “Cap” g(ﬂ) VeV —C takes e+
eo®e — —1

e®e—0
ora® b — det[a b]

o “Cup” Q(U):C—>V®V takes 1— e R —R® e

v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Group Invariance

Theorem

The image of G lies in the set of multilinear functions V" — V&I which
are invariant with respect to simultaneous conjugation of all matrix
elements by any X € SL(2,C). In other words, for all X € SL(2,C)

X-G(t(AL,...,A)) - X = G(t(XALX, ..., XAX)).

Here, - represents the action X - (v @ w) = Xv @ Xw.
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Group Invariance

Theorem

The image of G lies in the set of multilinear functions V" — V&I which
are invariant with respect to simultaneous conjugation of all matrix
elements by any X € SL(2,C). In other words, for all X € SL(2,C)

X-G(t(AL,...,A)) - X = G(t(XALX, ..., XAX)).

Here, - represents the action X - (v @ w) = Xv @ Xw.

XO Mﬂ
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Group Invariance

Theorem

The image of G lies in the set of multilinear functions V" — V&I which
are invariant with respect to simultaneous conjugation of all matrix
elements by any X € SL(2,C). In other words, for all X € SL(2,C)

X-G(t(AL,...,A)) - X = G(t(XALX, ..., XAX)).

Here, - represents the action X - (v @ w) = Xv @ Xw.

XO Mﬂ

Remark. As a corollary, closed trace diagrams are invariant under
simultaneous conjugation in the matrix variables!
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Group Invariance: Proof

It suffices to verify this property for the component maps. If

X11 X
X =" "2 , then
X21 X22

X6 ) X=Xx-6)

0J

v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Group Invariance: Proof

It suffices to verify this property for the component maps. If
X = <X11 X2 , then
X21  X22
X-Q(U)-)_(:X-Q(U) takes
1'—>X-(61®62—6‘2®el)
= (x11€1 + x21€2) ® (x12€1 + X22€2)
— (x12e1 + x2282) ® (x11€1 + X01€2)

= (x11x22 — x12%01)(e1 @ &2 — &2 ® €1)

0J

v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Group Invariance: Proof

It suffices to verify this property for the component maps. If
X = <X11 X2 , then
X21  X22
X-Q(U)-)_(:X-Q(U) takes
1'—>X-(61®62—6‘2®el)
= (x11€1 + x21€2) ® (x12€1 + X22€2)
— (x12€1 + x02€2) ® (x11€1 + X0162)

= (x11%02 — X12%01)(e1 ® & — & ® €1)
=—a®ea-a®ea=§().

0J

v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Group Invariance: Proof

It suffices to verify this property for the component maps. If
X = <X11 X2 , then
X21  X22
X-Q(U)-)_(:X-Q(U) takes
1'—>X-(61®62—6‘2®el)
= (x11€1 + x21€2) ® (x12€1 + X22€2)
— (x12€1 + x02€2) ® (x11€1 + X0162)

= (x11%02 — X12%01)(e1 ® & — & ® €1)
=—a®ea-a®ea=§().

The proof for the cap ﬂ is similar, while the calculations for the remaining
component maps are trivial. []

v
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he Functor G

Trace Diagrams and Their Properties ram Relations

Computing Trace Identities

@ Introduction

© Trace Diagrams and Their Properties

@ Trace Diagram Relations

© Structure of the Coordinate Ring

@ Central Functions
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Relations

Several diagrammatic relations arise from the component definitions, and
it is easy to find two diagrams for which G(t1) = G(t2). For example:
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Relations

Several diagrammatic relations arise from the component definitions, and
it is easy to find two diagrams for which G(t1) = G(t2). For example:

Proposition
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Trace Diagram Relations

Several diagrammatic relations arise from the component definitions, and
it is easy to find two diagrams for which G(t1) = G(t2). For example:

(Proposition

Let v = vie; + voer € C2. Then

5 () m=(nel) e (=L) )

:<m®|>(v®e1®e2—V®ez®€1)

=(—w)e — (v1)er = —v. O

\
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

The Fundamental Binor ldentity

Proposition (Fundamental Binor Identity)
U
— N
X~ ,
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

The Fundamental Binor ldentity

Proposition (Fundamental Binor Identity)
U
— N
X~ ,

(% ] >< represents the map a® b— b® a
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

The Fundamental Binor ldentity

Proposition (Fundamental Binor Identity)
U
— N
X~ ,

(% ] >< represents the map a® b— b® a

Q wanttoshowthatX:a®b'—>a®b—b®a
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

The Fundamental Binor ldentity

Proposition (Fundamental Binor Identity)
U
— N
X~ ,

(% ] >< represents the map a® b— b® a

Q wanttoshowthatX:a®b'—>a®b—b®a
© verify each element in the basis for C*> ® C?, e.g.

ez®el'g—l»i—(e1®e2—e2®e1):ez®el—el®e2 v
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

The Fundamental Binor ldentity

Proposition (Fundamental Binor Identity)
U
— N
X~ ,

(% ] >< represents the map a® b— b® a

Q wanttoshowthatX:a®b'—>a®b—b®a
© verify each element in the basis for C*> ® C?, e.g.

ez®el'g—l»i—(e1®e2—e2®e1):ez®el—el®e2 v

@ remaining basis elements work similarly [
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

The Fundamental Binor ldentity

Proposition (Fundamental Binor Identity)
X=l1-~
m >

(% ] >< represents the map a® b— b® a

Q wanttoshowthatX:a®b'—>a®b—b®a
© verify each element in the basis for C*> ® C?, e.g.

ez®el'g—l»i—(e1®e2—e2®e1):ez®el—el®e2 v

@ remaining basis elements work similarly [

Remark. The binor identity provides a means of eliminating all crossings
in an SL(2, C) trace diagram!
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Matrices at Critical Points

Proposition (Critical Points)

Matrices pass through critical points via

= det(A)U and - det(A)m.
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Matrices at Critical Points

Proposition (Critical Points)

Matrices pass through critical points via

= det(A)U and - det(A)m.

The definition det A = aj1ax — a1pa»1 becomes the diagram
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Trace Diagrams and Their Properties

Matrices at Critical Points

Proposition (Critical Points)

Matrices pass through critical points via

= det(A)U and - det(A)m.

The definition det A = aj1ax — a1pa»1 becomes the diagram
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Matrices at Critical Points

Proposition (Critical Points)

Matrices pass through critical points via

= det(A)U and - det(A)m.

The definition det A = aj1ax — a1pa»1 becomes the diagram

@ — D@ = det(A) and - detl(A)@
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Crossings at Local Extrema

Popostion
Show that the diagram \‘iJ may be well-defined.

Proct,

Move the crossing away from the extremum:
R R TR

Using \‘I) = \5 would have provided the same answer. O
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Crossings at Local Extrema

Proposton

Show that the diagram \‘iJ may be well-defined.

Proof.

Move the crossing away from the extremum:
R R TR

Using \‘I) = \5 would have provided the same answer. O

Remark: This makes the condition that crossings are disjoint from local
extrema unnecessary.
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Looping Relation

Proposition (Looping Relation)

Arcs may be wrapped around as follows:

>Q = ‘ and consequently @ = % = (%D

Apply the algebraic definition or the binor identity in each case.
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Closed Diagrams: Trace Polynomials

Closed diagrams with matrices can be thought of as
@ Functions G*" — C invariant under simultaneous conjugation;
@ Trace polynomials.
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Closed Diagrams: Trace Polynomials

Closed diagrams with matrices can be thought of as
@ Functions G*" — C invariant under simultaneous conjugation;
@ Trace polynomials.

@@ = (}\) =tr(A) = an1 + ax.

Proposition (Trace)
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Closed Diagrams: Trace Polynomials

Closed diagrams with matrices can be thought of as
@ Functions G*" — C invariant under simultaneous conjugation;
@ Trace polynomials.

@@ = (}\) =tr(A) = an1 + ax.

Proposition (Trace)

Q@:ﬂoA@loU:lHAel@ez—Aez@el

= (anne1 + a10) ® e — (a12€1 + ane) e
— ai1 + az. ]

>
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Defining the Functor G
Trace Diagram Relations
Computing Trace Identities

Trace Diagrams and Their Properties

Closed Diagrams: Trace Polynomials

Closed diagrams with matrices can be thought of as
@ Functions G*" — C invariant under simultaneous conjugation;
@ Trace polynomials.

G@ = (}\) = tr(A) = a1 + axn.

O = @ =tr(/)=2 and : 2det(A).

Proposition (Trace)
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Defining the Functor G
Trace Diagram Relations

Trace Diagrams and Their Properties

Computing Trace Identities

Summary of Diagram Rules

Diagram Rule (Summary)
5= ® X=ll-An ¥=\"+%/
V- o pes
@ — det(A) — det(A)U — det(A)ﬂ
(@:@\):tr(A) O:z :2det(A)

®6-
®-
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Defining Functor G

Trace Diagrams and Their Properties - _
am Relations

Trace ldentities

@ Introduction

© Trace Diagrams and Their Properties

@ Computing Trace ldentities

© Structure of the Coordinate Ring

@ Central Functions
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Defining the Functor G
Trace D m Relations
Computi race |dentities

Trace Diagrams and Their Properties

Example |

Use the binor identity to reduce tr(A?B) = [A2B] = .

Solution 1. Draw the diagram with crossings and apply the binor identity:
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Defining the Functor G
Trace 1 Relations
Computing Trace ldentities

Trace Diagrams and Their Properties

Example |

Use the binor identity to reduce tr(A?B) = [A2B] = .

Solution 1. Draw the diagram with crossings and apply the binor identity:

e&@ = @'86 — @B
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unctor G
Trace Di Relations
Computing Trace ldentities

Trace Diagrams and Their Properties

Example |

Use the binor identity to reduce tr(A?B) = [A2B] = .

Solution 1. Draw the diagram with crossings and apply the binor identity:

:
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Functor G
1 Relations
ace ldentities

Trace Diagrams and Their Properties

Example |

Use the binor identity to reduce tr(A?B) = [A2B] = .

Solution 1. Draw the diagram with crossings and apply the binor identity:

:

This corresponds to

[A?B] = [A]?[B] — 2det(A)[B] — det(B)[A][AB] + det(A)[B]
= [A]?[B] — det(A)[B] — det(B)[A][AB]. [
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Defining the Functor G
Trace Diagram Relations
Computing Trace ldentities

Trace Diagrams and Their Properties

Example |I: The Commutator Relation

tr(ABAB) = [ABAB] = [A]? + [B]? + [AB]? — [A][B][AB] — 2.

(Proof. [ \\ |

Ol

ot
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Defining the Functor G
Trace Diagram Relations
Computing Trace ldentities

Trace Diagrams and Their Properties

Example |I: The Commutator Relation

Proposition

tr(ABAB) = [ABAB] = [A]? + [B]? + [AB]? — [A][B][AB] — 2.

Represent the trace diagrammatically as
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Defining the Functor G
Trace Diagram Relations
Computing Trace ldentities

Trace Diagrams and Their Properties

Example |I: The Commutator Relation

Proposition

tr(ABAB) = [ABAB] = [A]? + [B]? + [AB]? — [A][B][AB] — 2.

Represent the trace diagrammatically as

A= AR
=K+ (| R-5%)
A+ (| R+ ) - (R + ) -
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Trace Diagrams and Their Properties

Example |I: The Commutator Relation

Proposition

tr(ABAB) = [ABAB] = [A]? + [B]? + [AB]? — [A][B][AB] — 2.

Represent the trace diagrammatically as

N NK
SN (X -5)
K (RN - (3R +5Y).

Re-insert matrices and keep track of signs:

[ABAB] = [B]? — [A][B][AB] + [A]? + [AB]? — 2.
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Trace Diagrams and Their Properties

Example |I: The Commutator Relation

Proposition

tr(ABAB) = [ABAB] = [A]? + [B]? + [AB]? — [A][B][AB] — 2.

Represent the trace diagrammatically as
AR =EAR A
S Sy
K (K1) - (3R ).
Re-insert matrices and keep track of signs:
[ABAB] = [B)? — [A][B][AB] + [A]? + [AB]? — 2.

Use [AB] = [A][B] — [AB] to obtain the desired relation. O
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Example Ill: The 2 x 2 Characteristic Equation

Trace Diagrams and Their Properties

The characteristic equation arises by replacing the eigenvalues in the
characteristic polynomial A> — tr(A)\ + det(A) = 0 with the matrix.

Proposition

The binor identity implies the characteristic equation
A? — tr(A)A + det(A)l = 0.

Proof.
By the binor identity,

| \

2498

This last expression is A2 = A x tr(A) — det(A)/, the characteristic
equation. n

A\
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© Structure of the Coordinate Ring
@ The Functor F

@ Surfaces and Character Varieties
@ Beyond Rank Two
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The Category Morphism

The next task is to construct F in the figure below.

m cI16*n°
X} (x)) =6(t)
r@ . /g/ﬁﬂp
t = F(x)

We will use this construction to examine the structure of the coordinate
ring C[x].
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Surface Group Representations

We now define the function F : m; — T, which assigns a trace diagram to
each element of the fundamental group.
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Surface Group Representations

We now define the function F : m; — T, which assigns a trace diagram to
each element of the fundamental group.

@ Assign ‘surface cuts’ to
elements of the
fundamental group.
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Surface Group Representations

We now define the function F : m; — T, which assigns a trace diagram to
each element of the fundamental group.

@ Assign ‘surface cuts’ to
elements of the
fundamental group.

@ Mark loops at the cuts

using the representation
w1 — G.
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Structure of the Coordinate Ring

Surface Group Representations

We now define the function F : m; — T, which assigns a trace diagram to
each element of the fundamental group.

@ Assign ‘surface cuts’ to
elements of the
fundamental group.

@ Mark loops at the cuts
using the representation
w1 — G.

@ Ensure drawing is
compatible with an “up”
direction.
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Structure of the Coordinate Ring

Surface Group Representations

We now define the function F : m; — T, which assigns a trace diagram to
each element of the fundamental group.

@ Assign ‘surface cuts’ to
elements of the
fundamental group.

@ Mark loops at the cuts
using the representation
w1 — G.

@ Ensure drawing is
compatible with an “up”
direction.

The additional action of G takes this element to tr(CBBA).
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The Character Variety

The ring of trace polynomials may be used to construct the following:

@ The G-character variety X is the algebraic variety whose coordinate
ring is the trace ring generated by representations.

In other words, the space of trace diagrams on a surface can be thought
of as precisely C[X].
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Proposition

For surfaces with free group of rank two, the coordinate ring C[x] is a
polynomial ring in three indeterminates.
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Structure of the Coordinate Ring

Proposition

For surfaces with free group of rank two, the coordinate ring C[x] is a
polynomial ring in three indeterminates.

\

Proof.

Given the binor identity
v
>< :| |— A~ all trace loops on
the three-holed sphere can be 00 56
reduced to three basic loop

types.

A\
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Structure of the Coordinate Ring

@ Introduction

© Trace Diagrams and Their Properties

© Structure of the Coordinate Ring

@ Beyond Rank Two

@ Central Functions
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Beyond Crossing Removal

What happens when we remove all crossings in higher rank cases??
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Beyond Crossing Removal

What happens when we remove all crossings in higher rank cases??
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Beyond Crossing Removal

What happens when we remove all crossings in higher rank cases??

©© O
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Beyond Crossing Removal

What happens when we remove all crossings in higher rank cases??

©© O

O O
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Beyond Crossing Removal

What happens when we remove all crossings in higher rank cases??

©© O

O O

Problem. There are an infinite number of diagams without crossings!
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Beyond Crossing Removal

What happens when we remove all crossings in higher rank cases??

©© O

O O

Problem. There are an infinite number of diagams without crossings!

Definition

A 2-trace diagram in a surface is simple if it has no self-crossings and
passes through each cut set (or contains each matrix variable) at most
once.
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Reduction of Diagrams |

Proposition

Trace diagram relations can reduce any surface loop to simple diagrams.
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Reduction of Diagrams |

Proposition

Trace diagram relations can reduce any surface loop to simple diagrams.

Use the binor identity to remove crossmgs For dupllcates
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Reduction of Diagrams I

Remark. Algebraically, the ability to reducec is simply the statement that
SL(2, C) trace relations can be used to reduce the polynomials for
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4-Element Trace Relations

Proposition
2[ABCD] = [A][B][C][D] + [AB][CD] + [BC][AD] — [AC][BD]
— [Al[B][CD] — [BI[C][AD] — [C][D][AB] — [A][D][BC]
+ [A][BCD] + [B][CDA] + [C][DAC] + [D][ABC].
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4-Element Trace Relations

2[ABCD] = [A][B][C][D] + [AB][CD] + [BC][AD] — [AC][BD]
— [A][B][CD] — [B][C][AD] — [C][D][AB] — [A][D][BC]
+ [Al[BCD] + [B][CDA] + [C][DAC] + [D][ABC].

ot

Reduce the crossings in the following diagram:

X
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4-Element Trace Relations

2[ABCD] = [A][B][C][D] + [AB][CD] + [BC][AD] — [AC][BD]
— [Al[B][CD] — [BI[C][AD] — [C][D][AB] — [A][D][BC]
+ [A][BCD] + [B][CDA] + [C][DAC] + [D][ABC].

Reduce the crossings in the following diagram:

e 434

0J

ot
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4-Element Trace Relations

2[ABCD] = [A][B][C][D] + [AB][CD] + [BC][AD] — [AC][BD]
— [Al[B][CD] — [BI[C][AD] — [C][D][AB] — [A][D][BC]
+ [A][BCD] + [B][CDA] + [C][DAC] + [D][ABC].

Proof

Reduce the crossings in the following diagram:

i

Now take the trace of all elements. The figure at left is [AC]|[BD]. The
first five terms on the right contribute to the 2[ABCD] term. The
remaining 11 terms are the rest of the relation. O

ot
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Structure of the Coordinate Ring

Diagrammatic Generators

We have now proven:

The set of simple trace diagrams with no more than three elements
generates the space of all closed trace diagrams on a surface.
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Structure of the Coordinate Ring

Diagrammatic Generators

We have now proven:

The set of simple trace diagrams with no more than three elements
generates the space of all closed trace diagrams on a surface.

But there are more diagrammatic relations...
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Three Element Trace Relations |

Proposition

[ABC] + [CBA] = [A][BC] + [B][AC] + [C][AB] — [A][B][C]
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Three Element Trace Relations |

Proposition

[ABC] + [CBA] = [A][BC] + [B][AC] + [C][AB] — [A][B][C]
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Three Element Trace Relations |

Proposition

[ABC] + [CBA] = [A][BC] + [B][AC] + [C][AB] — [A][B][C]

The anti-symmetrizer sends any a® b® c € C2 ® C? ® C? to zero.
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Three Element Trace Relations |

Proposition

[ABC] + [CBA] = [A][BC] + [B][AC] + [C][AB] — [A][B][C]

Proof.
The anti-symmetrizer sends any a® b® c € C2 ® C? ® C? to zero.

Given that [ = & (| | [+ %+ = X |- K =1 X) , this implies

the relations | | |

09 000 0

is preC|se|y the identity above.
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Three Element Trace Relations |l

Proposition
[ABC][CBA] = [A]* + [B]* + [C)* + [AB]? + [BC]* + [AC)?
— [Al[B][AB] — [B][C][BC] — [A][C][AC] + [AB][BC][AC] — 4.
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Three Element Trace Relations |l

Proposition
[ABC][CBA] = [A]* + [B]* + [C)* + [AB]? + [BC]* + [AC)?
— [Al[B][AB] — [B][C][BC] — [A][C][AC] + [AB][BC][AC] — 4.

Proof.

The crux of the argument comes in reducing the crossings of the following
diagram, which when closed gives the product [ABC][CBA|:

@B EOO

N

The result will be a diagam with sixteen terms including loops for
elements such as [AB] or [AB]. Applying the relation
[AB] = [A][B] — [AB] reduces the result to the above form. O
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Some Invariant Theory Results

A minimal generating set of C[x| consists of {tr(Xi)}, {tr(XiX;)} for
i < j, and {te(X;X;Xe)} for i < j < k.

A maximal independent set of generators consists of {tr(X;)} and
{te(X;Xj)} forj=i+1orj=i+2.
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Some Invariant Theory Results

A minimal generating set of C[x| consists of {tr(Xi)}, {tr(XiX;)} for
i < j, and {te(X;X;Xe)} for i < j < k.

A maximal independent set of generators consists of {tr(X;)} and
{te(X;Xj)} forj=i+1orj=i+2.

We have diagrammatically proven these theorems, except for
demonstrating certain two-element trace relations.
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Why the Diagrammatic Approach?

Diagrams are good for:
@ exhibiting mathematical structure
@ duality corresponds to turning diagrams upside-down

. . U
@ relations are often simply expressed: >< :| |— A
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Why the Diagrammatic Approach?

Diagrams are good for:
@ exhibiting mathematical structure
@ duality corresponds to turning diagrams upside-down
. . v
@ relations are often simply expressed: >< :| |f A
@ connecting algebra with geometry

o when placed on surfaces, trace diagrams describe the moduli space of
representations of a surface group

Elisha Peterson Trace Diagrams, Spin Networks, and Spaces of Graphs



The Functor F
Surfaces and Character Varieties

Structure of the Coordinate Ring Byl [Renis T

Why the Diagrammatic Approach?

Diagrams are good for:
@ exhibiting mathematical structure
@ duality corresponds to turning diagrams upside-down
@ relations are often simply expressed: >< :| |f x
@ connecting algebra with geometry

o when placed on surfaces, trace diagrams describe the moduli space of
representations of a surface group

@ discovering similarities among mathematical structures

° >< :| |— A 1s both a 2 x 2 trace identity and the defining relation of
the Poisson bracket on the coordinate ring of the character variety
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Why the Diagrammatic Approach?

Diagrams are good for:
@ exhibiting mathematical structure
@ duality corresponds to turning diagrams upside-down
. . v
@ relations are often simply expressed: >< :| |f A
@ connecting algebra with geometry

o when placed on surfaces, trace diagrams describe the moduli space of
representations of a surface group

@ discovering similarities among mathematical structures
° >< :| |— A 1s both a 2 x 2 trace identity and the defining relation of
the Poisson bracket on the coordinate ring of the character variety
@ computational algorithms

@ relations used to generate recurrence equations;
o illustrative method for generating trace identities.
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@ Central Functions

Elisha Peterson ce Diagrams, Spin Networks, and Spaces of Graphs



Central Functions

Basis for the Coordinate Ring |

Diagrams can be used to construct a basis for the trace ring.
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Basis for the Coordinate Ring |

Diagrams can be used to construct a basis for the trace ring.

Expand symmetrizers and remove crossings to
obtain a trace polynomial

X2 (tr(A), tr(B), tr(AB))
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Basis for the Coordinate Ring |

Diagrams can be used to construct a basis for the trace ring.

Theorem

The polynomials y2°
comprise a basis for the
coordinate ring of the
SL(2, C)-character
variety of the
three-holed sphere.

@ Proof uses the

unitary trick and
Expand symmetrizers and remove crossings to the Peter-Weyl
obtain a trace polynomial Theorem.

X2 (tr(A), tr(B), tr(AB))
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Shorthand:

Remarks:
o Edges are labeled by representations.
@ The basis exhibits considerable symmetry.

@ The basis depends only on fundamental group of the surface.

@ To generalize for other surfaces, add more loops: Q"@:@
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