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1. LATIN SQUARES

A Latin square of order » isan n X »n square in which each of the numbers 4,1, -, n—1 occurs exacty on
in each row and exactly once in each column. For example

a i 012 g1 23
10 120 1230
201 23017
301712

are Latin squares of order 2,34, respectively. Two Latin squares of order n are orthogonai, if when one is super—
imposed on the other, every ordered pair 00, 07, -, n —1 n — 1 occurs. Thus

01 2 g1 2 go 11 22
720 and 2017 superimpose to 172 20 01
201 1720 271 02 10

and therefore are orthogonal squares of order 3. Aset of Latin squares of order # is arthogonal if every two of them
are orthogonal. As an example the 4 x 4 square of triples

g 00 i 22 2 333
1723 032 3017 210
2 31 320 013 17072
372 203 730 0217

represents three mutually orthogonal squares of order 4 since each of the 16 pairs 00, 07, - , 33 occurs in each of
the three possible positions among the 16 triples.

There cannot exist more than n — 7 mutually orthogonal Latin squares of order n, and the existence of sucha
complete system is equivalent to the existence of a finite projective plane of order n, thatisa system of nint
/ points and n?+n+1 lines with n +1 points on each line. If n isa power of a prime there exist finite fields of
order £ which can be used to construct finite projective planes of order n. So, for n=2,3,4, 5,7, 8, 9 thereex:
ist complete systems of 7 — 7 orthogonal Latin squares of order n. We have listed the examples n=2, 3, 4, above,
It is known [2] that there are no orthogonal Latin squares of order 6 and that there are at least two orthogonal Latin
squares of every order n > 2 .n .+ 6. In fact, the number of mutually orthogonal Latin squares of order n goes to
infinity with n [3]. However no case of a complete system of n — 7 orthogonal Latin squares is known for any 2
which is not a power of a prime. '

2. LATIN CUBES

We can generalize all these concepis to » X n X n cubes and cubes of higher dimensions. ~
A Latin cube of order n isan n X n x n cube {7 rows, n columnsand n files) in which the numbers 0,7, -,
n— 1 are entered so-that each number occurs exactly once in each row, column and file. If we list the cube in terms
of the n squares of order n which form its different levels we can list the cubes
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a7 70 and 01 2 720 2017

70 g7 720 207 g1 2

2 017 a1 2 720
as Latin cubes of order two and three, respectively. Since even this method of listing becomes unwieldy for higher
dimensions we also use a listing by indices, Thus we write the first cubs as A = {a ) with agpp=1,ap10 = 1,

apr1 =0 arpo= 1, az01 =0 az70= 0 a;;;=1. Inasimilar manner we can describe four-dimensional cubes
A= ((7,-/-/(;3} or order 1, where each of the indices, /&2 ranges from 7 to n. Generally we can discuss k-cubes
A= Maj g j ) with & indices ranging from 7 to n. These cubes will be Latin 4-cobes of order n if each of the
A& entries IR is one of the numbers 4,7, -, n ~ 7 so that ajy.-jy, Tanges over all these numbers as one of the
indices varies from 7 to n while the other indices remain fixed.

Orthogonality of Latin cubes is now a relation among three cubes, or in general among & Latin k-cubes. That is,
three Latin cubes of order n are orthegonal if, when superimposed, each ordered triple will accur. Similarly & latin
k-cubes are orthogonal if, when superimposed, each ordered A-tuple will occur. A set of at least & Latin &-cubes is

orthogonal if every k of its cubes are orthogonal.
Theorem. If there exist two orthogonal Latin squares of order » then there exist 4 orthogonal Latin cubes of

order n and k orthogonal Latin 4-cubes for each & >3,
Froof. Let A=fay), B={b;) be orthogonal Latin squares of order 1.
Define 4 cubes C, D, £, F of order n by
Cijk = agpjer Dijk = apyh . Cijk = bajk» Tijke = bpyk. 1ik=0,1, -, n—1.
Note that the squares 4,8 are used both as entries and as indices in the construction of the cubes. For example the
pair of 3 x 3 Latin squares

N o~
\:?\;Q
SN~
NS~
~ D
S =N

leads to the four 3 x 3 X 3 cubes

C:

Mo N D~ @~ Ay o~ Ay
TSN~ NN oD~ SN~
NN N O~N O Ny
SNON DN MNND N~
SO @ D mN m N
DN~ NDT= —wND N~

NS NN NS NND
SON DN NDO~N DN~
N~ D NS oS~ N~

Superimposed these lead to a cube of quadruples
CDEF: oooo 1122 2211 1711 2200 0022 2222 0011 1100

12271 2010 0102 2002 0121 1210 0110 1202 2021
2112 0201 1020 0220 1012 2101 1001 2120 0212

where each ordered triple occurs in every one of the four possible positions in the guadruples.

li is easy to see that C,0,F,F are Latin cubes. For example, for fixed 7/ the values Cijk = da;,k 90 through the
6,-/!' row of A, thatis, through the values 4.7, -, n — 1. For fixed ik the index ;- goes tﬁrough all the values
inthe /" row of A, that is, through all values 8,7, -, n — 1 and hence cjx goes through all values in the Kt
tolumn of A. Finally for fixed j & the index aj; yoes through all values in the /t/’ column of A and therefore
Cijt again goes through all values in the K column of A,

To prove the orthogonality of, say, C,0,£ we have to prove that for every triple (x,y,2) from { a1 -, n—1 §
the equations

Cijk = X, ik = ¥, Eijk = 2
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have a solution jjk. By the orthogonality of 4 and 8 the pair (x,z) occurs exactly once in the superimpgsé
square A so that the equations agk =X, by =z determine k and . Thus the equations

Cijk = gk = X and Cijk = ba,’,‘,/r =z

determine ay and k. Now,since 4 isa Latin square, there is exactly one occurrence of y inthe £t

colump 5
A 3o the equation i

Bijk = ap =y
determines b;; and the pair (a;;,b;) determines i/
Thus for every triple (x,),z) thereis a unique triple {ij k).
This canstruction is essentially that given by Arkin for 4 orthogonal 70 x 70 x 70 cubes [1].
To prove the last part of the theorem we proceed by inductionon £ Let A 7, AX e orthegonal Latin k-tuhg
of order »n, and write the entries of 4/ ag ‘96‘7,“;//(' We now define & + 7 orthogonal Latin (4 + 7)-cubes B! .
BT by .
I],' iy 367 L.
PR Rk igery

P .
jg e f =d g

ekt 7 Bkt
Kk+T

inosieer S0
, 10k ket ¢
We omit the proof that the £ are Latin cubes, which is the same as before. In order to prove orthogonality wa
have to solve

Bl iy =X T kT

For any (k#1)-wple {x, -, Xi+1) from { g1, «, n-~ 7}. Now, by the orthogonality of A and B the tw
equations
Ay =Xy, B1 = Xy
ai7»"}/'k’/k+7 6’7"'>/k+7’lk+7
determine 8/77.../k and Jg+7. Once jgpq is determined the equations
A _ =y =2 ok
34'7,"',/'/(//k+7 /
determine .
Hpeir, 1= 2 k.
Once the elements

3;‘7.,.,'/( (/ =1, k)

are determined it follows from the orthogonality of the -cubes A7, ..., A¥ that the indices 7y, -, /; are determi
Thus for every (k+7)-tuple (x;, -, Xi+1/) there is a unique (k+1)-tuple (i1, =, ixs1) with
/ = x: =1, e k+17.
3,7.“’.k+7 / /
Since, as we mentioned, there are orthogonal Latin squares of every order 72, n 6 we have the following.
Corolla@/. There exist orthogonal &-tuples of Latin k-cubes of order n forevery n>2 n+86,

3. FIMITE FIELDS

A field is a system of elements closed under the rational operations of addition, subtraction, multiplication an:
division (except by 0) subject to the usual commutative, associative and distributive laws. There exist finite fiefd\
with n elements if and only if n is a power of a prime #. The prime p is the characteristic of the field and we

have pa=0 forevery « in the field. Following are the addition and multiplication tables for the fields with 3 ant
4 elements:

N~ D x
SO |
N o~ D~
~ N QN
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+ 0 7 a T+a X [/ a f+a
0 0 7 a 1+a 0 0 0 0 0

Fq ) 7 0 T1+a a Tolo o1 a T+a
a a T+a 0 7 a 0 a T+a 7
I+a{l1+a a 7 0 T+a| 0 T+a 7 a

If there is a field £, with n elements, thatisif » is a power of a prime, we use the elements g fo.fp 1, }
of Fp asindices to construct Latin squares, cubes, etc. We give the construction for cubes, but the genemhzatlon to
k-cubes is easily seen.

Let @, 3 v be three nonzero elements of F,, then we can define the Latin cube 4 = (a,jk} by

ajjk = afj+ Bl + B
Toseethat A isa Latin cube consider, say, fixed j/ and see that v/ runs through all elements of F,, as /k does.

Hence @i runs through £, as k=17, -, n.
Nowlet (a,B,v), (@,B,y") and (a”,B”v") be three triples of nonzero elements of F,, so that the determinant

N
a7 oy 0.
ar By

Then the three Latin cubes
A= lage), A= Aaly), A~ = far)
with
aji = afy +Bly+ vk, aj = alp+ PG+, ajf = a7+
are orthogonal. This follows from the fact that for any triple (x,y,2) from F, the three equations
ik =X, A TV, Ak =2
have a unique solution Fifity .
Now the Vandermonde determinants
1 ad?
178 ﬁz = (B—a)ly~ ally~pB)
1y ¥
are different from zera for any three distinct elements @,8,y of F,. Thus, letting & run through the nonzero ele-
ments of F,, we get n— 7 orthogonal Latin cubes of order 7,
= (af-/l-k), a,jk fi+af; + uzrk
The construction for a system of 7 — 7 orthogonal Latin k-cubes of arder 7 proceeds in exactly the same way if we
snt
- 1,4 a - f k-7
= (a,-r..,-k/, aigeiy = Tig# Alpyt oot Tie
where @ runs through the nonzero elements of F£,.

Theorem. tinisa power of a prime and k <, then there exists a system of 7 — 7 orthogonal k-cubes of order .

Gur previous examples censtructing four orthogonal cubes of orders 3 and 4 show that 7 — 7 is not necessarily the
maximal number of orthogonal k-cubes of order » for k > 2. However, the orthogonal cubes constructed with the aid
of finite fields satisfy additional properties. For each fixed value of & the squares

A%, = (a,jk} =12 ,n

form a complete system of n — 7 arthogonal Latin squares as a ranges through the nonzero elements of £, , and
similarly for each fixed 7 the squares

A =) k=12

foe

form a complete system of orthogonal Latin squares. If 2 is a power of 2 then the third family of cross-sections

AL = () k= 1,20
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form a complete system of orthogonal Latin squares for each fixed /, while for n add we get a system of (n~ 7/
orthogonal Latin squares, each square occurring twice.

Theorem. 1f n is a power of 2 then there exist n — 7 orthogonal Latin cubes of order n with the pmpertyth
the corresponding plane sections form systems of # —~ 7 orthogonal Latin squares.

It n isa power of an odd prime then there exist # — 7 orthogonal Latin cubes with the property that the corp
ponding plane cross-sections in two directions form complete systems of orthogonal Latin squares, while the pl
cross-sections in the third direction form a system of {n ~ 7)/2 orthogonal Latin squares, each square occurring ty;

Finally we observe that if we have orthogonal A-cubes of orders m and » then we can form their Kroneck
products to obtain orthoqona! k-cubes of order ma. Thatis fmm orthogonal k-cubes

= ¢ . = Q g ¢
(3,7 ,/} AT S (3/7.../k}/ = (/)/7..,/k}, ’ //)i7""./<)’
%
where the a’s run from 1 to m and the 6% from 1 to » we can form the orthogonal k-cubes 6‘7, CL, where
/o= (e S = (g i
c (c/r.,/k) and Ch i (a,7 /k’blr"/'k)

so that the ¢ run through all ordered pairs (7,7), -, (mn) as the pairs (77,71, (igfi) run through the
ordered pairs. Thus we have the following. 1

Corollary. 1t
- % Qg R &

n=pyipsps and q = miny<jcs bj

then for any & <g there exist at least g - 7 orthogonal Latin k-cubes of order n.
The relation to finite k-dimensional projective spaces is not as immediate as it is for Latin squares, and we sh

not discuss it here.
REFERENCES

1. J. Arkin, “A Solution to the Classical Problem of Finding Systems of Three Mutually Orthogonal Numbers in
Cube Formed by Three Superimposed 70x70x70 Cubes,” The Fibonacci Quarterly, Vol. 12, No. 2 (April 197
pp. 133-140. Also, Sugaku Seminar, 13 (1974), pp. 90-94.

2. R.C. Bose, S.S. Shrikhande, and E.T. Parker, “Further Results on the Construction of Mutually Orthogonal Lat
in Squares and the Falsity of Euler's Conjecture,” Canadian J. Math., 12 (1960), pp. 189—203.

3. 5. Chowla, P. Erdds and E.G. Straus, “On the Maximal Number of Pair-wise Orthogonal Latin Squares of a Give

Order,” Canadian J. Math., 12 (1960), pp. 204-208.
4. J. Arkin and V.E. Hoggatt, Jr., “The Arkin-Hoggatt Game and the Solution of a Classical Problem,” Jour. Re

reational Math., Vol. 6, No. 2 (Spring, 1973}, pp. 120-122.
This research was supported in part by NSF Grant No. GP-28696.

Fotkscdodok
ON EXTENDING THE FIBONACCI NUMBERS TO THE NEGATIVE INTEGERS

M. G. MONZINGO
Southern Methodist University, Dallas, Texas 75275

A sequence of positive integers defined by the formula
(1) Xp+7 = 8Xp*bx,_p, 1 apositive integer,
is said to be extendable to the negative integers if (1) holds for n any integer. See page 28 of [1]. The purposed

this note is to show that the Fibonacci numbers form a sequence which is extendable to the negative integers in
unique way. In this note only nontrivial integral sequences will be considered.

[Continued on Page 308.]
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