The Bridge and the Catenary

What thing is it,
the less it is the more it is dread?

A riddle, 15111

Ignace Gaston Pardies (1636-1673) was a French
Jesuit who corresponded with Huygens and New-
ton, yet he is little known today among mathe-
maticians, partly because his work was primarily
in physics. Yet there are several things he did that
deserve our attention. We begin with some com-
ments from his Elémens de géométrie (1671) which
was translated into Dutch (1690), Latin (1694)
and English (1701). The work begins with advice
for the reader which is well worth quoting in full
(from the 1711 edition), for it is splendid advice
for our students today.

Pardie’s Advice to those who would Under-
stant Geometry.

1. They ought to enure themselves to con-
sider well the Figures, at the same time as
they Read the Propositions. There will be
some Labour and Difficulty at first, but they
will break thro’ it in two or three Days.

2. They ought not to be discouraged, if
they meet with some things which they do
not understand at first; Geometry is not so
easie to be attained, as History.

3. If after they have Read and Considered
attentively any Proposition, they find they
don’t understand it; let it be passed over, it
will probably be Intelligible by reading fur-
ther, or at least when they have gone over
the whole, and have began to Read it over
a-new. There are indeed many things in Ge-

! Henry Petroski, To Engineer is Human (1985),
p. 158. This book has a nice chapter on bridges
and the author has several books on the topic.
The riddle comes from the first English book on
the topic. See Mark Bryant, Riddles: Ancient and
Modern, New York: Peter Bedrick Books, 1983,
The answer to the riddle is a bridge.
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ometry, that will never be well understood at
first Reading over.

4. The Numbers which are within Paren-
thesis, v.gr. (3. 14.) shew that the Matter
there spoken of, hath been proved elsewhere,
viz. in this Instance in the fourteenth Article
of the Third Book; And they ought always to
mind the Number of the Article, and to con-
sult the Places referred to, that so they may
gain the Demonstration of what they Read.
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2 " The Bridge and the Catenary

5.  When they meet with any Words which
they don’t understant, they may consult the
Table at the End of the Book. '

6. ’'Tis good to have a Master at first, to
Explain to them the Nature and Manner of
the Demonstrations: for by that means they
will Understand the thing much easier and
much sooner, than they can do by Reading
by themselves,

Now we turn to the work which is our primary
interest, La Statique ou Ia Science des Forces Mou-
vantes. This, which was first published in 1673, is
one of the earliest works on statics and dynamics.
One problem set in this book is to find the center
of gravity of a hanging cable. If the cable is of
uniform density and if the points 4 and B from
which it hangs are at the same horizontal level,
then symmetry makes it easy to identify the cen-
ter of gravity. However, Pardies does not make
this assumption, he Gonsiders any cable whatso-
ever, no matter how it is loaded. Although I have
asked lots of people, I have not yet found a math-
ematician, physicist, or engineer who could solve
this problem. Yes, Pardies has a remarkable sim-
ple solution. For the classroom, we will phrase it
using vectors for it is a neat example. Let a and
b be the force vectors needed to support the cable
at points A and B, which need not be on the same
horizontal line. Of necessity, these vectors will be
tangent to the cable at its ends. Also draw the
vector ¢, the downward forge acting on the cable

V. Fredericlg Rickey

due to its weight. This eminates from the center
of gravity of the cable. If the cable is to remain
stationary, then g-+b+c = 0, i.e., the three vectors
form a triangle. Thus to find the center of gravity

. we extend the force vectors a and b downward from

the points A and B from which the cable hangs.
The vector ¢ must pass through the intersection
of these two lines. This is the simplest real-world
application of vectors that I know.

Using this result, Pardies showed that a uni--
form hanging cable, a catenary, is not a parabola.
Consider only the portion of the cable between one
end o and the lowest point &.
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If we draw ta.ng;ent lines at a and horizontally at b

~ then they intersect at D and so the center of grav-

ity of the cable would be at C’, which is directly
above D. Now if the cable were parabolic, the
vertical line DC'E would divide oF in half. But
the the part aC’ of the parabola would be heavier
than the part C'b, so the center of gravity of the
parabola is not at C’. Thus the hanging chain, the
catenary, is not a parabola.
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V. Frederick Rickey

* For the seventeenth-century reader this proof
is complete, but for the modern reader, who has
not read Apollonius,? a bit more detail is needed.
Consider the parabola y = az?. If we draw the

tangent at the point (zq,az?), it will intersect the -

z-axis at the point zq/2. This is a nice result, for
it shows how to actually draw the tangent line to a
parabola, which almost no one today knows. You
should ask your students to get out thelr calculus
and check this result.

After this interlude about the catenaly, Par-
dies considered the following problem: “But if we
consider a thread without weight, on which rests
an infinity of equally heavy lines EC, ec, paral-
lel and equally distant from each other, then the
thread aCbA will be perfectly parabolic.”

He does not mention bridges or suspension
bridges, but we can see that this is equivalent to
that problem. We would prefer to consider the
strings to be hung from the cable. Let us consider
weightless strings w1th equal welghts attached to
them. If we consider these weights to be all at
the same height, then what we have is a model of
a suspension bridge with the weights representing
the roadway.

All he does is draw the tangent line aD from
end a of the cable, and tangent line bD from the
lowest point on the cable. These intersect at D
and so the center of gravity must be above it,
at C/. Since the vertical lines ec are all equally
heavy, the center of gravity must be at C’, which
is direclty below E and that aF = EF. Then he
comments “as the geometers know” the curve is a
parabola. '

‘Well any seventeenth century geometer who
had studied the conics would know this fact, but
not many twentieth century mathematicians do,
so we shall check it.

Consider the curve y = f(z) in the first quad-
rant and assume that the tangent line at the point
(z,y) will intersect the z-axis at the point (z/2, 0).
By definition the slope of this tangent line is y/(z/2)
and by calculus it is dy/dz and so we obtain & sim-
ple differential equation,

Q.l&.
<

=£L
z/2

2 See Apollonius, Book I, Proposition 33.
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Y= 4(7"

Xr2

Separating variables and integrating we have

Y z

In(y) = 2In(z),

or

ie.,
Y= .

Thus the curve is a parabola.?
A Modern Approach

Several years ago, I was teaching an “honors”
calculus class, where the emphasis was on con-
cepts, not computation. When we came to the
simple differential equations that are discussed in
calculus, I asked my students the shape of the ca-
bles on a suspension bridge. The answer to' this
question is not as widely known as it should be.
Many mathematics teachers have told me that the
shape of the cable on a suspension bridgs is a cate-
nary. Let us see why that is wrong.

To build a suspension bridge, erect two tall
towers, and construct a cable between them. From
this cable we suspend & large number of small ver-
tical cables called suspenders, which are used to
support the roadway of the bridge. In an actual
bridge, the roadway is almost horizontal, and its

3 This is the converse of the result of Apollo-
nius cited in note 2. The earliest proof of this
result that I know uses calculus and is in Johann
Bernoulli’s lectures to L’Hospital in 1693, but there
must have been earlier geometric proofs.

This file, bridge-catenary.tex, was typeset using TEX on June 6, 2002 at 4:41 P.M.



4 The Bridge and the Catenary

weight is very large compared to the total weight
of the various cables. Thus it is reasonable to ig-
nore the weight of the cables in our mathematical
model. This is the crucial idea: only the weight

of the roadway matters. It is.also important that -

the weight of the roadway is uniformly distributed
in the horizontal direction.

Our goal is to find the shape of the main cable
on a suspension bridge. As always, we begin by
setting up a convenient coordinate system. Since
the cable is obviously symmetric with respect to
its low point, let the y-axis pass through this point,
and only consider the right portion of the bridge
above the interval [0, z]. First consider just the ca-
ble above this interval. All of the forces acting on
this segment of the cable must be in equilibrium
or it would be in motion.* Let T'(0) be the ten-
sion on the left end of the cable. Since this is the
low point of the cable, the force acts horizontally.
Let T(z) denote the tension on the right end of
the segment we are considering., This tension vec-
tor pulls the cable up and to the right and acts
along the tangent line, which is at an angle o with
the horizontal. When this vector is resolved into
vertical and horizontal components we obtain the
situation illustrated.

The assumption that the roadway is uniformly
distributed tells us that over the interval [0, z] the
roadway has weight pz, where p is the constant
density of the bridge deck. This weight acts ver-
tically; it has no horizomtal component. Conse-
quently, equating the horizontal forces we obtain
the first equation below. The second comes from
‘the vertical forces:

T(0) = T(z) cos(a)
pz = T'(z) sin(a).

¢ The most famous counterexample is “Gallop-
ing Gertie,” the first Tacoma Narrows Bridge over
Puget Sound in the state of Washington that was
torn épa.rt on November 7, 1940 by the wind. The-
ories abound about what happened ranging from
Theodore von Kérmén’s article in the Engineer-
ing News-Record just two weeks after it fell to P.
J. McKenna, “Large torsional oscillations in sus-
pension bridges revisited: Fixing an old approx-
imation,” American Mathematical Monthly, 106
(1999) 1-18. Won the MAA's Ford Award in 2000.

V. Frederick Rickey

: T(x) sm u -
A

; T(x) ‘€05 o

T Vet = px

‘What we now desire is a differential equation,

All we need to do is remember the basic idea that
dy/dz = tanc. Then, from the above equations
we obtain:

__sin(a)

j—z=tan(a’)— pz/T(z) _ p

cos(e)  T(0)/T(zx) T(O)ZI

Integrating we obtain,

p
Y= 9T

Thus we see that the shape of the cable on a
suspension bridge is a parabola.®

After I did this problem in class, I said that
it was just a warm up for a more difficult and very
famous problem, the catenary problem. This time
we have only the main cable. What is its shape?

Galileo (1564-1642) had suggested that a heavy
rope suspended from both ends would hang in
the shape of a parabola, a conjecture which was
disproved by Joachim Jungius (1587-1657) and

fL‘Z -f"ho

5 A very nice treatment of this problem along
with much general information about bridges is in

Alexander J. Hahn, Basic Calculus From Archimedes

to Newton to its Role in Science, Springer, 1998,
Pp. 257-265. The book contains a number of other
examples of how history can be used in teaching.
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published posthumously in 1669. The 1673 dis-
proof of Pardies was given above and Christiaan
Huygens (1629-1695) had an unpublished refuta-
tion in 1646. If you read the geometric proof

of Huygens,® you will see what a great accom- -

plishment the new calculus of Leibniz and New-
. ton was. The true shape of the curve was not
known until 1690/91 when Huygens, Leibniz, and
Johann Bernoulli (1667-1748) replied to a chal-
lenge of Jakob Bernoulli (1654-1705). The name
“catenary” was introduced by Huygens in a let-
ter to Leibniz in 1690; it derives from the Latin
“catena,” which means “chain.” This was the first
independent work of Johann Bernoulli, who was
immensely proud that he had solved the catenary
problem” and that his brother Jakob, who had
posed it, had not. Writing to Pierre Remond de

Montmort. (1678-1719) years later, on 29 Septem- .

ber 1718, Johann boasted:

The efforts of my brother were without suc-
cess; for my part, 1 was more fortunate, for
I found the skill (I say it without boasting,
why should I conceal the truth?) to solve it
in full and to reduce it to the rectification of
the parabola. It is true that it cost me study
that robbed me of rest for an entire night. It
was much for those days and for the slight age
and practice I then had, but the next morn-
ing, filled with joy, I ran to my brother, who
was still struggling miserably with this Gor-
dian knot without getting anywhere, always
thinking like Galileo that the catenary was a
parabola. Stop! Stop! I say to him, don't
torture yourself’any more to try to prove the
identity of the catenary with the parabola,
since it is entirely false. The parabola indeed
serves in the construction of the catenary, but
the two curves are so different that one is al-
gebraic, the other is transcendental ®

After giving all of this history to my class,

6 H. J. M. Bos, “Huygens, Christiaan,” Dictio-
nary of Scientific Biography, volume 6, pp. 97—
613, especially p. 601.

7 Acta eruditorum, 1691; 2, vol. 1, 48—51

8 Der Briefwechsel von Johann Bernoulli, (1667-
1748), edited by Otto Spiess, 1955, pp. 97-98.
This translation is from Morris Kline, Mathemati-
cal Thought from Ancient to Modern Times, 1972,
p. 473.
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time had run out, so I announced that we would
omit the derivation of the equation of the cate-
nary. To my great surprise, the students howled
in protest-and insisted that we do the derivation
next time. Naturally, I was happy to oblige, but
this event was so unique that I have ever since
attributed it to the fact that I had presented the
problem in its historical setting. I have no stronger
example of history as a motivating force.

So now let us derive the equation of the cate-
nary. The notation in the previous figure, with a
few changes, will suffice. Of course, the roadway is
no longer there. This time the weight is that of the
cable alone. It is distributed uniformly along the
cable, not uniformly in the horizontal direction.

/
|

1

A X

This is the main difference from the suspension
bridge. The derivation becomes more complicated
since we must introduce the parameter s, which
denotes arc length. Consequently, the weight of
the cable is ps. The horizontal forces are the same
as before, so we have

T(0) = T'(z) cos(a),

but the downward vertical force is ps, so this time
we have

ps = T'(z) sin(a).
Eliminating T'(z) between these two equations and
then solving for.s . we have.

s = ktan(a)

, where k = T(0)/p. Thinking ahead, if we dif-
ferentiate T and y with respect to arc length s we
have:
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6  The Bridge and the Catenary

dz dy _ .
e cos(a) and == sm(a),

aresult which is clear from Leibniz's characteristic )

triangle.

da

7|y
T dw

By the chain rule (what could be more fitting to
use in the catenary problem?),

&8 2 -% = cos(a) - ksec?(a) = kseé:( )

= == -C% = sin(a) - ksec?(a) = ksec(a) - tan(e).

Integrating each of these we have
z = kln|sec(a) +tan(e)| and y = ksec(a).

Finally, if we expend a little effort and use
some trigonometric identities to eliminate o from
these two equations we obtain

y = kcosh(z/k),

which is the equation of a catenary.®

Thus we have seen that when a suspension
bridge is being erected, and only the cable is up,
then it assumes the shape of & catenary. However,
when the roadway is installed below, then the ca-
ble changes shape to a parabola.

Perhaps this is an opportune point to mention
the issue of historical accuracy in the classroom.

® For a somewhat different solution see C. H.
Edwards Jr. and David E. Penney, Calculus and
Analytic Geometry, 1982, pp. 371-373. Also see
Paul Cella, “Reexamining the Catenary.” College
Mathematics Journal, 30 (1999), 391-393.

V. Frederick Rickey

Contrary to the professional historian of ‘mathe-
matics, the classroom teacher need not be a slave
to historical details and methods. The teacher
should not lie, but it is not necessary to tell the
whole story. To provide an overabundance of de-
tail will bore the students and will not advance our
goal of using history to motivate and instruct the
students. In particular, it isnot. ‘necessary, and sel-
dom desirable, to use the same methods to derive
results that their inventors did. The above deriva-
tion for the catenary is stated in modern language,

and I would certainly not apologize for doing so in

class.?
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10 An earlier version of this note appears in my
paper “My favorite ways of using history in teach-
ing calculus,” pp. 123-134 in Learn From the Mas-
ters, edited by Frank Swetz et alia, MAA, 1995.
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