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Georg Cantor (1845-1918)

Ever since Newton mathematicians have grappled with the problem of infinity
as it arises in the foundations of the calculus and in the theory of the real
numbers. This topic has arisen in many of the selections in Volume 1: recall,
for instance, Berkeley's ‘Of infinites’ (7707-8); his critique of infinitesimals and
fluxions in The analyst (1734); MacLaurin’s defence of Newton in the Treatise
of fluxions (1742); D’ Alembert’s comments on infinity, differentials, and limits
(1754, 1765a, and 1765b); and Bolzano’s paper on the intermediate value theo-
rem (/817a), or his Paradoxes of the infinite (1851). In the course of the nine-
teenth century mathematicians like Gauss and Cauchy, Abel and Dirichlet,
Fourier and Riemann, Weierstrass and Heine laboured to put real analysis on
a rigorous foundation, and by the 1870s they had largely created the modern
theory of the elementary calculus, giving precise ¢ and J definitions of conti-
nuity, differentiability, limits, and the like.

Cantor’s investigations grew out of this tradition, and mark a new era in the
foundations of mathematics. Cantor, together with Dedekind, created the set-
theoretic approach to mathematics that was to dominate the twentieth century;
and for sheer unexpectedness, for sheer imaginative power, his theory of
transfinite arithmetic has no equal in modern mathematics except possibly the
theory of non-Euclidean geometry. The Continuum Hypothesis belongs to a
different order of difficulty and depth than Boole’s algebraic analysis of the
syllogism, or De Morgan’s studies of the logic of relations, or Frege and Peirce’s
discovery of the quantifiers. Those were important events, but in a sense inevi-
table; whereas the transfinite numbers burst on the world of mathematics entirely
unexpectedly. Cantor’s work raised profound new questions about the infinite,
and was responsible for drawing mainstream mathematical intellects of the
calibre of Hilbert, Poincaré, Hausdorff, Brouwer, Weyl, and von Neumann (o
the foundations of mathematics.

The following selections represent but a small part of Cantor’s set-theoretical
ceuvre, and have been selected for the light they shed on the sources and devel-
opment of his frequently murky thought. Those seeking a detailed examination
of Cantor’s researches and his struggles with the Continuum Hypothesis should
consult the study by Michael Hallett, Cantorian set theory and limitation of size
(Hallett 1984). _

Cantor was born in St Petersburg, and schooled in Wiesbaden and Darmstadt.
He entered the University of Berlin in 1863, where he received his mathematical
education. His teachers at Berlin were Kummer, Kronecker, and above all Kart
Weierstrass, whose lectures on the foundations of real analysis exerted a strong
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influence on Cantor’s early papers. Cantor left Berlin in 1869 to assume a teach-
ing position at the University of Halle; he remained in Halle for the rest of his life.

Cantor’s early mathematical papers investigated Fourier series and the foun-
dations of real analysis; it was this research that eventually led him to his
research in the theory of sets. He was influenced in this early work by
wwm-:m::,m 1854 Habilitation thesis, ‘On the representation of a function by a
trigonometric series’, which had been posthumously published by Dedekind in
1868. (This paper, in addition to examining the convergence properties of
Fourier series, also treated problems in infinitesimal analysis and stated the defi-
nition of the Riemann integral.) Cantor investigated the unique representability
of functions by trigonometric series, proving in Cantor 1870 that, if f(x) is
represented by a trigonometric series convergent for all x, then the representa-
tion is unique. In Cantor 1871 he strengthened the result, showing that his theo-
rem still holds even if the series diverges at a finite number of points in any
given interval.

His next important paper, Cantor 1872, extended these results yet further;
it made major contributions to classical analysis, and laid the groundwork for
his study of infinite sets. Cantor begins in §1 of this paper by sketching his
theory of the real numbers: a real number is an infinite series of rational
numbers a,, a,, ..., a,, ... such that for any given & there exists an n, such
that, for n = n, and for any positive integer m, |a,, ,, — a,| < €. (This theory
is discussed by Cantor, and compared with the theories of Heine and Dedekind
in §9 of Cantor 1883d, translated below.) In §2, Cantor defines the notion om.
a ‘boundary point’ of a point-set P to be any point such that every neighbour-
hood of the point contains infinitely many points of P. The first derivative of
P (designated by P’) is the set of all boundary points of P; the second derivative
P" is the set of all boundary points of P’, and so on. In §3 Cantor extends
his earlier results on trigonometric series: uniqueness of representation holds
even if the series diverges at an infinite number of points, provided the set of
points is of finite order. (A point-set P is of finite order if, for some integer
n, the nth derivative P of P is a finite set.) The paper of 1872 laid the foun-
dations of point-set topology (its techniques were adopted in particular by
Haudsorff, Borel, and Fréchet); it also led Cantor into a deeper study of the
cardinality of subsets of the real line and (in his 7/880) to the study o?:\::.\m
derivatives of a point-set.

A. ON A PROPERTY OF THE SET OF REAL
ALGEBRAIC NUMBERS
(CANTOR 1874)

This article is Cantor’s first published contribution to the theory of sets. The deep
and epoch-making result of the paper is not the easy theorem alluded to in
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the title——the theorem that that the class of real algebraic numbers is countable—
but rather the proof, in §2, that the class of real numbers is nof countable. It was
this result that first gave a clear sense to the idea that infinite sets could be of
different sizes, and that marks the start of the theory of the transfinite. The
background to Cantor’s discovery can be found in the next selection below, in
the opening letters of his correspondence with Dedekind.

It should be noted that Cantor’s proof here is not the familiar ‘diagonal argu-
ment’, an argument he did not publish until 1891. (Canror 1891 is translated
below.) Cantor’s proof in this paper is rather based on the Bolzano-Weierstrass
theorem, of which he had given a proof in Cantor 1872; unlike the diagonal argu-
ment, it does not extend to sets in general.

The translation is by William Ewald; references to Cantor 1874 should be to
the section numbers, which appeared in the original text.

By a real algebraic number one generally understands a real number w which
satisfies a non-constant equation of the form:

aw"+ a0 '+ ... +a,=0, (

where n, a,, a,, . . . a, are integers: we can here imagine that the numbers 7 and
a, are positive, the coefficients a,, a,, . . . a, are without common parts, and the
equation (1) is irreducible; with these stipulations it turns out that, by the well-
known fundamental theorems of arithmetic and algebra, equation (1), which is
satisfied by a real algebraic number, is fully determinate; conversely, if n is the
degree of an equation of the form (1), then the equation is satisfied by at most
n real algebraic numbers w. The real algebraic numbers form in their totality a
set [Inbegriff] of numbers, which shall be designated by (w); as is readily seen,
(w) has the property that in every neighbourhood of any given number « there
are infinitely many numbers from (w). So it ought at first glance to be all the more
striking that one can correlate the set (w) one-to-one with the set (designated by
the sign (v)) of all positive integers v—in such a way that to every algebraic
number w there corresponds a definite positive integer, and, conversely, to every
positive integer v there corresponds an entirely definite real algebraic number w.
Or, to say the same thing in different words, the set (w) can be thought of in the
form of an infinite lawlike sequence [gesetzmiRigen Reihe]

Wy, Wy oo Wyy oo @)

in which all the individuals of (w) appear and each of which occurs in (2) at a
definite position, which is given by the accompanying index. As soon as one has
found a law by which such a correlation can be thought, it can be modified at will;
so in §1 I shall describe the correlation which seems to me the least complicated.

In order to give an application of this property of the set of all real algebraic
numbers I show in §2 that, given any arbitrarily chosen sequence of real num-
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bers of the form (2), then, in any given interval (« ... f8), one can determine
[bestimmen] numbers n which are not contained in (2); if one combines the
results of these last two paragraphs, then one has a new proof of the theorem,
first proved by Liouville, that in any given interval (o . . . f) there are infinitely
many franscendental (that is, not algebraic) real numbers. Further, the theorem
in §2 turns out to be the reason why sets of real numbers which form a so-called
continuum (say, all real numbers which are = 0 and =1) cannot be mapped
one-to-one onto the set (v); thus I have discovered the difference between a so-
called continuum and any set like the totality of real algebraic numbers,

§1.

Let us return to equation (1), which is satisfied by an algebraic number ¢ and
which, under the mentioned stipulations, is fully determinate. Then the sum of
the absolute values of its coefficients, plus the number n — 1 (where n is the
degree of w) shall be called the height of the number . Let it be designated
by N. That is, in the usual notation:

N=n—1+|a| + |a)| +...+ |a,]. 3)

The height N is thus for every real algebraic number w a definite positive
integer; conversely, for every positive integral value of N there are only finitely
many algebraic real numbers with height N; let this number be ¢ (N); then, for
instance, ¢ (1) = 1; ¢(2) = 2; ¢(3) = 4. The numbers of the set (w), i.e. all
the algebraic real numbers, can then be ordered in the following manner: one
takes as the first number w, the one number with the height N = 1; let the
¢(2) = 2 algebraic real numbers with the height N = 2 follow them according
to size, and designate them by w,, wy; these are followed by the ¢(3) =4
numbers with height N=3, according to size; in general, after all the numbers
in (w) up to a certain height N = N, have been enumerated |abgezihlt] and
assigned to a definite place, the real algebraic numbers with the height
N = N, + 1 follow them according to size: thus one obtains the set (w) of all
real algebraic numbers in the form:

Wy, Wy, ... Wy, ...
One can, with respect to this ordering {Anordnung], speak of the vth real

algebraic number; not a single member of the set has been omitted.

§2.

Suppose we have an infinite sequence of real numbers,
Wy, Wyy oo Wy ... 4)

where the sequence is given according to any law and where the numbers are
distinct from cach other. Then in any given interval (« . .. ) a number 7 (and
consequently infinitely many such numbers) can be determined such that it does
not occur in the series (4); this shall now be proved.
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We go to the end of the interval (¢ ... f), which has been given to us
arbitrarily and in which o < g; the first two numbers of our sequence (4) which
lie in the interior of this interval (with the exception of the boundaries), can
be designated by a’, f’, letting o’ < B’; similarly let us designate the first two
numbers of our sequence which lie in the interior of (¢’ ... ') by «”, ",
and let &” < 8”; and in the same way one constructs the next interval («” ...
B"”), and so on. Here therefore o’, a” ... are by definition determinate
numbers of our sequence (4), whose indices are continually increasing; the same
goes for the sequence ', B” ... ; furthermore, the numbers o', «”, . .. are
always increasing in size, while the numbers §*, #”, ... are always decreasing
in size. Of the intervals (o« ... B), (&’ ... 8), (@” ... "), ... each encloses
all of those that follow.—Now here only two cases are conceivable.

Either the number of intervals so formed is finite; in which case, let the last
of them be (& ... ). Since in its interior there can be at most one number
of the sequence (4), a number » can be chosen from this interval which is not
contained in (4), thereby proving the theorem for this case.—

Or the number of constructed intervals is infinite. Then the numbers «, «’,
a”, ..., because they are always increasing in size without growing into the
infinite, have a determinate boundary value «a®; the same holds for the
numbers 8, 8', B”, ... because they are always decreasing in size. Let their
boundary value be . If «™ = 8% (a case that constantly occurs with the set
(w) of all real algebraic numbers), then one easily persuades oneself, if one only
looks back to the definition of the intervals, that the number 7 = ¢® = %
cannot be contained in our sequence;' but if «® < 8% then every number # in
the interior of the interval («™ ... %) or also on its boundaries satisfies the
requirement that it not be contained in the sequence (4).—

The theorems proved in this article admit of extensions in various directions,

of which 1 shall mention only one here:

UM w,, @y, ... w,, ...is a finite or infinite sequence of numbers which are
linearly independent from one another (so that no equation of the form a;w;,
+ ayw, + ... + a,w, =0 is possible with integral coefficients which do not

all vanish) and if one imagines the set () of all those numbers @ which can
be represented as rational functions with integral coefficients of the given
numbers , then in every interval (« ... f) there are infinitely many numbers
which are not contained in ().’

In fact one persuades oreself through a method of proof similar to that in
§1 that the set () can be conceived in the sequential form

Q, 9, ... Q,

from which, in view of §2, the correctness of the theorem follows.

"If the number 5 were contained in our sequence, then one would have 5 = Wy, where p is a
definite index. But this is not possible, for w, does not lie in the interior of the interval (‘P ..

APy Ll Ll dafillilne dha aeshar w Aaac o in tha intorine Af ths intarval
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A quite special case of the theorem cited here (in which the sequence w,,
Wy, ... w,, ... is finite and the degree of the rational functions, which yield
the set (12), is stipulated in advance) has been proved, with recourse to Galoisian
principles, by Herr B. Minnigerode (See Math. Annalen, Vol. 4, p. 497).

B. THE EARLY CORRESPONDENCE
BETWEEN CANTOR AND DEDEKIND

Cantor and Dedekind exchanged letters over a period of many years. The mathe-
matical portions of some of their letters were published by Emmy Noether and
Jean Cavailles in 1937; the mathematical portions of others were published
(with many errors of transcription) by Ernst Zermelo in his edition of Cantor’s
writings (Cantor 1932). The Cantor Nachlass, containing the original letters
from Dedekind, appears to have been destroyed in the Second World War. The
letters from Cantor and drafts of some of the letters from Dedekind were taken
to America by Emmy Noether, and are now kept at the library of the University
of Evansville, Evansville, Indiana. (For an account of the history and the con-
tents of the Evansville collection, see Grattan-Guinness 1974.) Portions of the
non-mathematical correspondence, not published by Noether and Cavaillés or
by Zermelo, are reproduced in Grattan-Guinness 1974 and in the appendices
to Dugac 1976.

The selection that follows is a translation of the correspondence published by
Noether and Cavailleés, omitting only Cantor’s letter to Dedekind of 22 December
1879. That letter gives a counterexample to a theorem of Appell in trigonomet-
ric series, and is of little importance today. (Cantor’s late correspondence with
Dedekind in 1899 is translated below as Selection E.) The correspondence spans
the period from April 1872 (immediately after the publication of the theories
of Dedekind and Cantor on the irrational numbers) to November 1882 (imme-
diately before the publication of Cantor’s Foundations of a general theory of
manifolds). This was the period during which Cantor made his greatest dis-
coveries in the theory of sets, and his correspondence with Dedekind provides
rare documentation of the way in which a new mathematical theory was
discovered.

The translation is by William Ewald; references should be to the dates of the
correspondence.

Cantor to Dedekind
Halle a/S, 28 April 1872

I thank you most warmly for kindly sending me your treatise on continuity and
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