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1 Abstract

In 1735, Euler found the differential equation k4 d4y
d4x = y to be “rather slippery.”

In 1739, he “rather unexpectedly” found the full solution, a solution involving
trigonometric functions. Previously there were only trigonometric “lines” in a
circle. Euler’s views on trigonometry matured and in 1748 in his Introductio
in analysin infinitorum, he introduced the trigonometic functions on the unit
circle just the way we introduced them today. By the time he published his
Institutionum calculi integralis (three volumes, 1768-1770), he had a full com-
mand of the solutions of first-order linear differential equations with constant
coefficients.

2 Abstract

Can you evaluate the integral of the sine using Riemann sums? Do you think
Archimedes could? Is it intuitively clear to you that the derivative of the sine
is the cosine? If not, why not? What did Newton and Leibniz know about
sines and cosines? When did sines become the sine function? Who is the most
important individual in the history of trigonometry? Answers will be provided.

3 Archimedes

No doubt you consider Archimedes to be the greatest mathematician of antiquity
and one of the greatest of all time, alongside Newton, Euler and Gauss. Probably
this belief is based on what you have read and been told. I would like to begin
by convincing you that it is true, even though this seems to have little to do
with my theme of the history of the calculus of the trigonometric functions.
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In his work On the Sphere and the Cylinder, I, Archimedes has the following
proposition:

Proposition 21. If in an even-sided and equilateral polygon is inscribed inside
a circle, and the lines are draw through, joining the sides of the polygon (so that
they are parallel to one — whichever — of the lines subtended by two sides of
the polygon), all the joined <lines> have to the same diameter of the circle that
ratio, which the <line> (subtending the <sides, whose number is> smaller by
one, than half <the sides>) <has> to the side of the polygon.

Proof: Let there be a circle, ABΓ∆, and let a polygon be inscribed in it,
AEZBHΘΓMN∆ΛK, and let EK, ZΛ, B∆, HN , ΘM be joined; (1) so it is
clear that they are parallel to the <line> subtended by two sides of the polygon;
Now I say that all the said <lines> have to the diameter of the circle, AΛ, the
same ratio as ΓE to EA.

(a) For let ZK, ΛB, H∆, ΘN be joined; (2) therefore ZK is parallel to EA
(3) while BΛ <is parallel> to ZK (4) and yet again to ∆H to BΛ, (5) and
ΘN to ∆H (6) while ΓM <is parallel> to ΘN [(7) and since EA, KZ are two
parallels, (8) and EK, AO are two lines drawn through]; (9) therefore it is: as
EΞ to ΞA, KΞ to ΞO. (10) But as KΞ to Ξ0, ZΠ to ΠO, (11) and as ZΠ to
ΠO, ΛΠ to ΠP , (12) and as ΛΠ to ΠP , so BΣ to ΣP , (13) and yet again, as
BΣ to ΣP , ∆Σ to ΣT , (14) while as ∆Σ to ΣT , HY to Y T , (15) and yet again,
as HY to Y T , NY to Y Φ, (16) while as NY to Y Φ, ΘX to XΦ, (17) and yet
again, as ΘX to XΦ, MX to XΓ [(18) and therefore all are to all, as one of
the ratios to one]; (19) and therefore EΞ to ΞA, so EK, ZΛ, B∆, HN , ΘM to
the diameter AΓ. (20) But as EΞ to ΞA, so ΓE to EA; (21) therefore it will be
also: as ΓE to EA, so all the <lines> EK, ZΓ, B∆, NH, ΘM to the diameter
AΛ.1

1[10, p. 112–113]. Reviel Netz, who is editing a new edition of Archimedes, says that
this proposition is “strange.” The diagram with the sides of the polygon drawn with curved
lines tells us something about the way Archimedes drew diagrams. The long name for the
dodecahedron is “playful.” The proof is a list of facts, it does not “argue.” Moreover, it
has nothing to do with spheres or cylinders. The many words interpolated in angle brackets
are explained thus: “Greek mathematical proofs always refer to concrete objects, realized in
the diagram. Because Greek has a definite article with a rich morphology, it can elide the
reference to the objects, leaving the definite article alone.” (p. 6).
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This proof looks horrible, yet it is really quite simple, especially if we rewrite
it in more modern notation. Observe that in the diagram, the diameter is
divided into 10 line segments, and on each there is a triangle, half below the
diameter, half above. All of these triangles are similar and steps 9–17 of the
proof use this to obtain:

EΞ
ΞA

=
KΞ
ΞO

=
ZΠ
ΠO

=
ΛΠ
ΠP

=
BΣ
ΣP

=
∆Σ
ΣT

=
HY

Y T
=

NY

Y Φ
=

ΘX

XΦ
=

MX

XΓ

Now by the theory of proportion — get out your algebra and check — we have

EΞ
ΞA

=
EK + ZΛ + B∆ + HN + ΘM

AΓ

and by step 20 we have EΞ : ΞA :: ΓE : EA and thus we reach the final
conclusion:

EK + ZΛ + B∆ + HN + ΘM

AΓ
=

ΓE

EA
.

This helps, but it sure does not yet look like calculus. Let us now generalize
and rewrite this result in terms of trigonometry. Suppose we have a polygon
with 2 · n sides rather than the 2 · 6 that Archimedes has. Thus ∠EΓA = π/n.
Also suppose the radius of the circle is 1. Then we have EK = 2 sinπ/n,
ZΛ = 2 sin 2π/n, B∆ = 2 sin 3π/n, etc. We also have ΛE = 2 cos π/n and
EA = 2 sin π/2. Thus our proposition becomes

1
2

(
2 sin

π

n
+ 2 sin

2π

n
+ 2 sin

3π

n
+ · · ·+ 2 sin

(n− 1)π
n

)
= cot

π

n

Now this looks a lot like a Riemann sum, and if we add one more term and
multiply by π/n then we actually have one:

π

n

(
2 sin

π

n
+2 sin

2π

n
+2 sin

3π

n
+· · ·+2 sin

(n− 1)π
n

+2 sin
nπ

n

)
=

π

n
cot

π

n
+

π

n
2 sin

nπ

n
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Now, taking the limit as n tends to infinity, we have∫ π

0

sinx dx = 2.

If Proposition 22 is rewritten in a similar fashion, we obtain∫ α

0

sinx dx = 1− cos α.

That is rather amazing! Riemann sums are used to evaluate the integral of
the sin; you will not find this in many textbooks.2 Now you will note that I
have not claimed that Archimedes knew the integral of the sine. Sir Thomas
Little Heath, whose edition of Archimedes is most accessible (since Dover has
reprinted it), claims that “Archimedes’ procedure is the equivalent of a genuine
integration” [5, p. cxlvi]. Well, perhaps so, but ‘equivalent’ is a very strange
yet strong word to be used this way. It is easy for us to read thoughts and
interpretations into a text that would be very foreign to the author.

In particular, no claim has ever been made that Archimedes knew about
trigonometry. Hipparchus (150 BC), who flourished some sixty years after the
death of Archimedes, was the father of trigonometry. His work “On the theory
of the lines in the circle,” contained a table of chords (double-sines) which he
used to compute the rising and setting times of fixed stars. Thus trigonometry
had its roots in astronomy.3 Three centuries later, Ptolemy provided a well
developed presentation of trigonometry in his Almagest (150 CE).

So who rewrote Archimedes in terms of trigonometry. Heath [5, p. cxlv]
cites a work of Gina Loria, but it gives no reference at all and certainly does
not appear to be an original contribution of Loria.4

NB: Combine Cardano, Roberval etc into a short paragraph above.

4 Cardano

CARDANO, Girolamo (1501-76) De subtilitate libri XXI... - Basel, Ludovicus
Lucius, 1554. Early edition of Cardano’s most celebrated work (1st edn.: 1550).

2It can be found in Richard Courant, Differential and Integral Calculus (second edition,
1937, pp. 86–87), Al Shenk, Calculus and Analytic Geometry, second edition, 1979, p. 228,
and I. M. Gelfand and Mark Saul, Trigonometry (Birkhäuser, pp. 169, 228–229). But none
of them connect this result with Archimedes. The easiest way to obtain this result is to take
the imaginary part of the geometric series eix + e2ix + · · · + enix (Courant, p. 436)

3In fact, it was not until late in the sixteenth century that trigonometry was used for land
measurement [8]. This was in the Trigonometria: sive de solutione triangulorum tractatus
brevis et perspicuus (1595), of Bartholomew Pitiscus (1561–1613), the work which coined
the word trigonometry. The second edition of this work, Trigonometriae sive de dimensione
triangulorum libri quinque, contained tables of all six trigonometric functions (the only earlier
work to do this was that of Rheticus, 1596).

4Heath takes his formulas from Loria, Il periodo aureo della geometria greca, p. 108. I
have not been able to examine this work. It appears to be the subtitle to volume 2 of Le
scienze esatte nell’ antica Grecia (3 volumes, 1895). However, the relevant formulas appear
on pp. 296–297 of the second edition (1914), which is available in the University of Michigan
Historical Math Collection: http://name.umdl.umich.edu/ACU8840.0001.001.
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(This) encyclopaedia... is a mine of facts, both real and imaginary of notes
on the state of the sciences; of superstition, technology, alchemy and various
branches of the occult (DSB III, 66).

5 Pascal

In June of 1658, Blaise Pascal (1623–1662) had a toothache. To distract himself
from the pain he began to think about certain problems of length, volume, and
center of gravity connected with the cycloid. When the pain quickly subsided,
he took this as a sign from God that the study of mathematics was acceptable
and focused on mathematics for the next nine months.

Pascal was convinced that he had refined and broadened Roberval’s method
of indivisibles and so used his results to challenge the abilities of his contem-
porary mathematicians in an unsigned circular of June 1658. Due to the short
time interval allotted for solutions, no one solved the problems to Pascal’s satis-
faction. Consequently, Pascal published the solutions in four letters which were
collected and republished as the Lettres de A. Dettonville contenant quelques-
unes de ses inventions de geometrie.5

Of special interest in the classroom is a result contained in a portion of the
Lettres entitled Traité des sinus du quart de cercle,6 which does not deal with
the cycloid. In Proposition I, Pascal finds the integral of the sine in a most
ingenious way. Pascal begins with a diagram and immediately comments:

I say that the rectangle formed by the sine DI and the tangent EE
is equal to the rectangle formed by a portion of the base (enclosed
between the parallels) and the radius AB.

What Pascal then did was to divide the circular arc into infinitely many
pieces of equal size and then sum the rectangles. For the modern interpreter it
is perhaps better if we do not do things precisely Pascal’s way, but rather flip
the diagram over and then split the regions he is using into two.

5This second order pseudonym, ‘Amos Dettonville,’ is an anagram, assuming u = v, for
‘Louis de Montalte,’ the pseudonym that Pascal used for his famous Lettres provinciales.

6Lettres de A. Dettonville, 1659, London: Dawsons of Pall Mall, 1966
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Consider the following diagram where t is the length of the line segment
which is tangent to the circle, b is the base of the indicated triangle, and θ is
the length of the arc from the x-axis to the base of the triangle.

1

1

sin θ
θ

b

t

by similar triangles we have
t

b
=

1
sin θ

so
sin θ · t = b.

Note that this is a restatement of Pascal’s remark quoted above in the special
case where the radius is 1.

θ1

θ2

θ3

t1

t2

t3

α

β

·

·

·

b1b2b3

Now consider the sector of the circle bounded by α and β. Divide this arc
into infinitely many infinitesimal pieces of width ∆θ (only three of which are
shown) and draw the indicated tangent lines ti which begin at the point θi.
Summing these we have ∑

sin θi · t =
∑

bi.

Using the approximation that ∆θ is close to ti and taking the limit as ∆θ tends
to 0 we have:

lim
∑

θi ·∆θ = lim
∑

bi.

On the left we have a Riemann sum, and on the right — if we remember that
line segments from the origin out to some point on the x-axis are cosines, we
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see that ∫ β

α

sin θ dθ = cos α− cos β.

Although the method used here is somewhat foreign to modern mathematicians,
it does appeal to our students and provides a remarkably easy proof (and, yes,
it can be made into a rigorous ε-δ proof if you insist on obscuring it).

When the modern mathematician considers this proof, the first puzzling
thing is that there is no sine curve in sight. The explanation for this is simple:
there was no sine curve at the time. In Pascal’s time, a sine was still a certain
line segment inside a circle.

6 Newton

In the fall of 1665, Isaac Newton (1642–1727) made annotations on his reading
of the Arithmetica infinitorum of John Wallis. Using interpolation techniques
of Wallis, Newton comes very close to getting the power series for the arcsine.
He is reasonably clear about having it, but he does not write it down [11, I,
123–124]. However, when he wrote De analysi in 1669 he explicitly gives the
series for sine and cosine [11, II, 237], but he does not explain how he obtained
them. Although these series were known earlier in India, there is no question
that Newton’s discovery was original.

[12, II, 35–36]

arcsin x = x +
x3

6r2
+

3x5

40r4
+

5x7

112r6
+ etc.

sin z = z − z3

6r3
+

x5

120r4
− x7

5040r6
+

x9

368220r8
− etc.

These formulas look strange to you; what is that ‘r’ doing in there? That is
the radius of his circle.

The “circle area sought will be”

ax +
x3

2a
− x5

40a3
− x7

112a5
− 5x9

1152a7
· · · .

In 1663 James Gregory (1638–1675), at age 24, traveled to London to oversee
the publication of his first book, Optica promota, which was a masterly account
of mirrors and lenses, containing the first description of a reflecting telescope.
While there he met John Collins and they became lifelong friends. Collins was
an avid correspondent with scientists and was dubbed “Mersennus Anglus” by
Isaac Barrow. He also met Georg Mohr.

Gregory “could have learned in Italy” that the area under the curve y =
1/(1+x2) is an arctangent. By long division, one obtains 1−x2 +x4−x6 + · · ·,
and then by Cavaliari’s formula for integrating powers, he easily obtains

arctan (x) = x− x3

3
+

x5

5
− x7

7
+ · · · .
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7 Cotes

In an 1865 text on the differential calculus, John Spare has a section on “Differ-
entiation of the circular functions.” He begins by noting that he “presupposes
the principle of Analytic Trigonometry” [13, p. 206]. He then finds the derivative
of the sine function in a way that closely parallels Cotes:

224. In order to differentiate sin .x, we must have for radius 1, if a
be any arc, and b any additional arc, by the ratio of corresponding
parts of right angled plane triangles:

sin .(a + b)− sin .a : tan .b :: cos .a : 1;

that is,
sin .(x + h)− sin .x : tan .h :: cos .x : 1;

but if h = 0, sin .(x+h)−sin .x becomes d sin .x, and tan .x becomes
dx, or differential of the arc.

∴ d sin .x : dx :: cos .x : 1

∴ d sin .x = cos .x dx.

8 Euler

Euler’s work where he creates trigonometric FUNCTIONS because he needs
them to solve differential equations.

On 15 September 1739, Euler, in a letter to Johann Bernoulli, reports that
he has begun the general treatment of homogeneous linear differential equations
with constant coefficients [See Ince, p 534 for references].

In a paper written for the 1748 prize of the Paris Academy, Euler discussed
some trigonometry.

La plûpart du calcul roulera donc sur les angles, que j’introduirai
eux-mêmes dans le calcul, en marquaant leurs sinus, sosinus, tan-
gentes, cotangentes, par les caracteres sin, cos, tang, cot mises devant
les lettres qui expriment les angles. Cela abregera très-considérablement
le calcul, surtout dans les intégrations et différentiations: or, comme
cette maniere d’opérer n’est pas encore reçue généralement, ilsera à
propos d’avertir que les différentielles des formules

sinφ, cos φ, tang φ, cot φ

sont
dφ cos φ, −dφ sinφ,

dφ

cos φ2
et − dφ

sinφ2
:

oú il faut aussi remarquer que cos φ2 marque le quarré du cosinus de
l’angle φ, et sinφ2 le quarré du sinus de l’angle φ, et not pas le cosinus
ou le sinus du quarré de l’angle: ce qui suffira pour l’intelligence des
calculs suivans. [3, §14]
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il est à remarquer que d·l tang ρ signifie la différentielle du logarithme
de la tangente de l’angle ρ: ou puisque d · tangρ = dρ

cos ρ2 , on aura,
d · l tang ρ = d tangρ

tangρ = dρ
tangρ cos ρ2 = dρ

sin ρ cos ρ ‘a cause que , tangρ =
sin ρ
cos ρ . [3, §16]

NB: Put comments about Introductio here.
Chapter 6, “On the differentiation of transcendental functions,” of Euler’s

Institutiones calculi differentialis (1755), which is available in an English transla-
tion by John Blanton [4] deals with the derivatives — or differentials as he says7

—of the logarithmic, exponential and trigonometric functions. Euler states that
in his Introductio (1748) he explained the nature of these functions

so clearly that they could be used in calculation with almost the same
facility as algebraic quantities. In this chapter we will investigate
the differential of these quantities in order that their character and
properties can be even more clearly understood. [4, p. 99]

The chapter begins with a discussion of the differentials of the logarithm and
exponential function. He then cites a formula from from the Introductio:

arcsinx =
1√
−1

ln(
√

1− x2 + x
√
−1)

whose differential is
d(arcsinx) =

dx√
1− x2

.

Euler realizes that this seque may be a bit much and so he proceeds to derive
the result in another way:

This differential of a circular arc can also more easily be found with-
out the aid of logarithms. If y = arcsinx, then x is the sine of the
arc y, that is, x = sin y. When we substitute x+dx for x, y becomes
y + dy, so that x + dx = sin(y + dy). Since

sin(a + b) = sin a · cos b + cos a · sin b,

we have
sin(y + dy) = sin y · cos dy + cos y · sin dy.

As dy vanishes the arc becomes equal to its sine, and the cosine
becomes equal to 1. For this reason sin(y + dy) = sin y + dy cos y,
so that x + dx = sin y + dy cos y. Since sin y = x, se have cos y =√

1− x2, from which we obtain

dy =
dx√

1− x2
.

7Cite Grabiner’s paper. Is this the correct reference: Judith V. Grabiner, The Changing
Concept of Change: The Derivative from Fermat to Weierstrass, Math. Mag. 56 (1983),
195-206.
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The arc of a given sine has a differential equal to the differential of
the sine divided by the cosine. [4, p. 111]

After deriving the differentials of the other inverse trigonometric functions
in similar fashion, Euler proceeds with a series of examples, culminating in

dn+1 arcsinx

dxn+1
=

1 · 2 · 3 · · ·n
(1− x2)n+1/2

(
xn+

1
2

n(n− 1)
1 · 2

xn−2+
1 · 3
2 · 4

n(n− 1)(n− 2)(n− 3)
1 · 2 · 3 · 4

xn−4+· · ·
)
.

Euler now proceeds to consider the derivatives of the trigonometric functions:

Let x be a circular arc and let sinx denote its sine, whose differential
we are to investigate. We let y = sinx and replace x by x + dx so
that y becomes y + dy. Then y + dy = sin(x + dx) and

dy = sin(x + dx)− sin(x).

But
sin(x + dx) = sin x · cos dx + cos x · sin dx,

and since, as we have shown in Introduction,

sin z =
z

1
− z3

1 · 2 · 3
+

z5

1 · 2 · 3 · 4 · 5
− · · · ,

cos z = 1− z2

1 · 2
+

z4

1 · 2 · 3 · 4
− · · · ,

when we exclude the vanishing terms, we have cos dx = 1 and
sin dx = dx, so that

sin(x + dx) = sin(x + dx) + cos x.

Hence, when we let y = sinx, we have

dy = dx cos x.

Therefore, the differential of the sine of any arc is equal to the prod-
uct of the differential of the arc and the cosine of the arc.

Euler concludes the chapter with derivations of the differentials of the other
trigonometric functions and then a series of examples.

9 Agnesi

In 1749 Jean Jacques d’Ortous de Mairan (1678–1771) and de Montigni reported
to the French Academy that Agnesi’s second volume, the one dealing with cal-
culus, should be translated into French. They state that the book “contains
almost all the discoveries made up to now in differential and integral calculus.”
They also write that
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It took much skill and sagacity to reduce, as the author has done,
to almost uniform methods these discoveries scattered among the
works of modern geometers and often presented by methods very
different from each other. Order, clarity, and precision reign in all
parts of this work. . . . We regard it a the most complete and best
made treatise . . . [?, p. 128].

However, a French translation did not appear until 1775 [1]. No transla-
tor is named in the volume but Montucla claims that it was Jacques Antoine
Joseph Cousin (1739–1800). The ‘Advertissement’ at the beginning of this edi-
tion indicates that only the second volume of Agnesi has been translated. One
might surmise that there were ample books in French at this time that dealt
with algebra and analytical geometry. The ‘Privilége’ (p. iv) indicates that the
book was examined by d’Alembert, Condorcet and Vandermonde and they gave
permission for it to be printed.

At the end of the French edition we find two “Additions de L’Editeur,” the
first deals with the “Calcul des quantitiés angulaires” (pp. 478–487) and the
second is entitled “Remarques sur l’integration des différentielles du premier
order.” The first of these, on trigonometry, is the more interesting. The author
indicates that this was added because Agnesi does not give explicit direct meth-
ods of differentiating and integrating the trigonometric functions. I will give
one example of each. The author begins by giving ten trigonometric identites
which will be used later.

III. Imaginons que l’angle y augmente de sa différentielle dy; il est
clair qu’on aura

d(sin .y) = sin .(y + dy)− sin .y,

&
d(cos .y) = cos .(y + dy)− cos .y

ou (Théor. I.),

sin .(y + dy) = sin .y cos .dy + sin .dy cos .y,

& (Théorême III),

cos .(y + dy) = cos .y cos .dy − sin .y sin .dy.

D’un aure côté, l’angle dy étant infiniment petit, on peut supposer
dans les deux equations qu’on vient de trouver, sin .dy = dy, cos .dy =
1, comme il est claire pa le série que donne le sinus ou la cosinus
par l’angle. Par conséquent, on aura, en subtituant & rédvisant,
d(sin .y) = dy cos .y, & d(cos .y) = −dy sin .y.

This derivation follows almost exactly that given by Euler in his Institutions
calcului differentialis [?, §201, p. 116–117], except that Euler explicitly gives the
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Taylor series for sin and cos which he truncates to one term. The use of the
periods after sin and cos in the French signify that they are abbreviations; this
is the same notation that Euler uses in his Introductio. There is one significant
difference between Euler and Agnesi, however. Agnesi uses the old word ‘angle’,
whereas Euler uses the modern, precise term that he himself introduced, ‘arc.’
I suspect that this derivation is taken from Euler, but it is interesting that the
more important lesson of using the unit circle has not been leaned.

There are two points dealing with integration in this appendix that are
notable. The first involves the integral

∫
z dz

√
(1 + cos .z). We are told to

observe that∫
z dz

√
(1 + cos .z) = x

∫
dz

√
(1 + cos .z)−

∫
dz

∫
dz

√
(1 + cos .z).

This formula stumped me at first, for I had never seen a formula when one
integrates twice respect to z, but then I realized it is just an integration by
parts. Curiously, this integration technique has not been used previously. I
know neither the history of this method or where the name comes from.

10 After Euler

Now trigonometry becomes useful. Jean Baptiste Joseph Fourier (1768–1830)
completed his important memoir On the Propagation of Heat in Solid Bodies in
1807. A committee consisting of Lagrange, Laplace, Monge and Lacroix was set
up to report on the work. Lagrange and Laplace objected to Fourier’s expansions
of functions as trigonometrical series, what we now call Fourier series. Today
this memoir is very highly regarded but at the time it caused controversy, enough
so that a revised edition was not published until 1822 as his Théorie analytique
de la chaleur.

This work of Fourier had an immense impact on both science and mathemat-
ics. One of the controversies about Fourier series dealt with their convergence.

Put a bit in about how Cantor’s work on convergence of Fourier series led
to set theory.
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