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Abstract

We discuss the introduction, student discovery, and teaching of a system of
differential equations that model a circuit. In an engineering mathematics course
we provide sufficient physics conceptual framework and differential equations
background to enable students to model a given two-loop circuit and solve (us-
ing Laplace transforms and Mathematica) the system for various values of input
voltage. We give each student a unique input voltage frequency and ask for the
system response to it. Students pool data, plot the results, and discover that a
cascaded high-low filter circuit is the object of their study. We further enhance the
modeling perspective by interpreting the system in terms of Laplace transforms
and the transfer function for the system. This path permits easy computation of
the gain. Students see the meaning of the transfer function and the an example of
the power of mathematics in analyzing technology.

Introduction
We present a two-loop circuit to students in an engineering mathematics

course. At the time of this activity our students have solved second-order lin-
ear constant-coefficient ordinary differential equations (ODEs) by hand, with
Mathematica, and by Laplace transforms. Though they have studied funda-
mental electrical circuit elements in physics classes, we provide a refresher
on voltage and current and on the principal devices of capacitor, resistor, and
inductor. We direct them to the section of our engineering mathematics text
[Kreyszig 1999] for the notions of conservation of charge and Kirchhoff’s cir-
cuit laws, which help us build differential equations which model our two
circuits—one for each loop.

We consider a typical RLC circuit (see Figure 1) with resistance R (ohms),
inductance L (henrys), and capacitance C (farads or microfarads). An electro-
motive force E(t) = E0 sin(ωt) (volts) drives the circuit, producing a current,
I(t) (amperes).
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Kirchhoff’s voltage law says that in the circuit at all times the voltage source
E(t) = E0 sin(ωt), equals the sum of the three voltage drops—over R, L, and
C, i.e., E = ER + EL + EC (see Figure 1). The voltage drop over each of
the devices, resistor R, inductor L, and capacitor C, is given by the following
formulae, respectively:

(R) ER = RI ,

(L) EL = LI ′, and

(C) EC = 1
C

∫
I(t) dt.

We could review for the students certain physics basics and try to explain the
physical devices while deriving these expressions. Usually, though, we take a
more accepting view and just use the results to build our differential equations,
saving interpretation of the results, (R), (L), and (C), for our analyses of the
solutions, as we do below.

Figure 1. Single loop RLC circuit for student instruction.

Now we are ready to introduce our differential equation in I(t), the current
in the one-loop circuit of Figure 1, using Kirchhoff’s voltage law. We sum the
voltages across the resistor, the inductor, and the capacitor and set this sum
equal to the voltage E(t) from the driver:

LI ′(t) + RI(t) +
1
C

∫
I(t) dt = E0 sin(ωt), (1)

We convert this equation into a second-order differential equation in I(t) by
differentiating both sides:

LI ′′(t) + RI ′(t) +
1
C

I(t) = E0ω cos(ωt). (2)

Prior to the voltage source being applied, there is nothing happening in the
circuit, that is, there is no voltage or force to move the electrons in the circuit;
hence we have the reasonable initial conditions I(0) = 0 and I ′(0) = 0.

At this point in the course, we often move out into various areas of interest
with respect to a single-loop circuit. We introduce terms such as reactance and
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impedance and see the roles that these concepts play in the solution. We discuss
the system’s response to the driver voltage, that is, what the current out (and
hence the voltage over a resistor) is for a voltage in; and we consider the notion
of gain for a circuit. We ask the question: For a given single-loop RLC circuit,
what input voltage frequency will give rise to the greatest “output” voltage, i.e.,
current I(t) and hence voltage over a specific resistor, RI(t)? We discuss how
a radio “picks” signals out of the ether by varying the capacitance and thereby
changing the peak response frequency, which is then amplified for us to hear.
Of course, we are attentive to the mathematics; but we find that students are
motivated to study the mathematics when they have a setting of interest to
them, and circuits provide that.

Course Activity
We describe a course activity that can take place in one to two class periods.

We give the class an electrical circuit and each student a unique value of a
parameter—the frequency of the driver voltage. We ask each student to model
the circuit, solve for the gain associated with the student’s assigned parameter
value, and report back this gain value. We collect the data, plot it to see what
we can learn, and then ask the students to describe what they think this circuit
really does. The circuit that we offer our students is shown in Figure 2.

Figure 2. Two-loop circuit for student analysis.

The values for this circuit are C1 = 2.5× 10−6 F (farads), C2 = 1.0× 10−6 F,
R1 = 200 Ω (ohms), and Rload = 1000 Ω. We use E(t) = sin(ωt) V (volts) with
ω = 100 (radians/s) as a trial run.

We build equations to describe this two-loop circuit using Kirchhoff’s volt-
age law as above and introducing Kirchhoff’s current law, which says that the
sum of the currents at any node in the circuit must be 0, that is, what goes into
the node has to go out without loss or gain.

We identify variables:

x(t) is the current from node 1 to node 2,

y(t) is the current from node 2 to node 5, and
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z(t) is the current from node 2 to node 3 to node 4 to node 5.

One way to measure the behavior of this circuit is to compare the amplitude
of the “output” voltage z(t)Rload (recall that voltage is current times resistance)
with that of the input voltage E(t).

Students can apply Kirchhoff’s two laws to find the relationship between
the source voltage E(t) in Loop I and the sum of the voltages across the devices
in Loop I,

sin(100t) = x(t)R1 +
1
C1

∫
y(t) dt; (3)

and in Loop II the students use the resultant voltage across C1 as a source
voltage and add the voltages across C2 and Rload,

1
C1

∫
y(t) dt =

1
C2

∫
z(t) dt + z(t)Rload. (4)

Finally, we use Kirchhoff’s Current Law at node 2:

x(t) = y(t) + z(t). (5)

Imposing initial conditions that all currents and all change (derivative) in
currents are 0, we have in (1)–(3) what we need in order to solve for each
of the three currents, x(t), y(t), and z(t). In particular, we can solve for z(t)
and determine the amplitude of z(t)Rload, the output voltage, to compare to the
amplitude of E(t) = sin(100t), the input voltage. This ratio of output voltage to
input or source voltage is called gain. We seek the gain for various input voltage
frequencies ω with ω = 100 Hz (radians/s) being the trial-run frequency. We
recall that the input or source voltage frequency is exactly the same as the
output voltage, so in studying gain, we are merely comparing amplitudes of
the same frequency voltages.

We then assign each student a unique frequency ω for an input voltage
E(t) = sin(ωt) and ask for the gain for that frequency. Finally, we plot gain vs.
input frequency and see what the students think of such a plot (see Figure 3).
What does the plot tell us? For this circuit, we assign input voltage frequencies
ω in the range (0, 1000].

Laplace Transform Solution Strategy
We demonstrate here the analysis through which we guide our students for

ω = 100 to determine the gain of the circuit. We then leave them to analyze the
gain from their own input voltage frequency for homework.

We use Laplace transforms in Mathematica to solve this system of differ-
ential equations: LaplaceTransform[f[t],t,s] transforms f(t) from the time
domain t to the frequency domain s.
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Figure 3. Gain data collected from the student efforts with their assigned input voltage frequen-
cies ω.

There are other approaches that we could use. For example, after differen-
tiating (3)–(4), we can obtain a system of two first-order differential equations,
say in x(t) and z(t), by using (5) to eliminate y(t). We can then apply Mathe-
matica’s DSolve:

C1 = 2.5/10^6; C2 = 1/10^6; R1 = 200; Rload = 1000;}
DSolve[{100*Cos[100*t] == R1*x’[t] + x[t]/C1 - z[t],}

(x[t] - z[t])/C1 == z[t]/C2 + Rload*z’[t]}, {x[t], z[t]}, t]}

However, as we will see, the Laplace transform approach offers conceptual
“gains” to be made.

The Laplace transform F (s) of a function f(t) is

F (s) =
∫ ∞

0

e−stf(t) dt.

Here are the Laplace transforms of (3)–(5):

100
10000 + s2

= 200X(s) +
400000Y (s)

s
, (3’)

400000Y (s)
s

=
1000000Z(s)

s
+ 1000Z(s), (4’)

X(s) = Y (s) + Z(s). (5’)

Using Mathematica’s Solve command, we obtain:

Z(s) =
200s

(s + 756.6)(s + 2643.4)(s2 + 10000)
.
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The Apart command does partial fraction decompositions and hence offers
students convenient and routine access to the transforms of the corresponding
transient and steady-state portions of the solutions:

Z(s) = −0.00013769
s + 756.6

+
0.000040046
s + 2643.4︸ ︷︷ ︸

transient solution

+
0.0000976519s + 0.0016684

s2 + 10000︸ ︷︷ ︸
steady state solution

,

From their familiarity with inverting the Laplace transforms of

1
s + a

,
1

s2 + a2
, and

s

s2 + a2
,

students identify the transient and steady-state Laplace transform pieces (or
else they perform the Inverse Laplace transform calculation and make the tran-
sient and steady-state identifications in hindsight).

Applying theInverseLaplaceTransform command, we obtain z(t), the cur-
rent over the resistor Rload:

z(t) = 0.000040046e−2643.4t − 0.00013769e−756.602t︸ ︷︷ ︸
transient solution

+ 0.000097652 cos(100t) + 0.000016684 sin(100t)︸ ︷︷ ︸
steady state solution

.

Thus, to obtain the amplitude of the steady state, since the contribution of the
transient disappears very rapidly, we use trigonometric identities to combine
the sine and cosine terms into one phase-shifted sine term with the amplitude
of the current z(t) passing through resister Rload:

amplitudecurrent =
√

0.0000976522 + 0.0000166842 = 0.0000990669.

This means that the amplitude of the voltage across Rload is

amplitudevoltage = amplitudecurrent · Rload = 0.0000990669 · 1000 = 0.0990669 .

Now, the gain for the chosen frequency ω = 100 is the amplitude of the voltage
across the resistor Rload, which is 0.0990669, divided by the amplitude of the
input voltage E(t), which is 1, so

gain =
0.0990669

1
= 0.0990669.

Student Activity
At the next class, we ask for a report from each student: “What was your

assigned frequency and what gain did you obtain?” We plot these roughly
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on the board before inputting them as data pairs into Mathematica and using
ListPlot (see Figure 3). Incidentally, errors in student work are glaring when
each individual student’s data point is plotted in this manner!

Once we all see this plot, we know something about what this circuit does.
It appears to have low gain for both very low- and very high-frequency in-
put voltages. Almost always, there is a student who remarks that this is the
characteristic of a filter, that is, the circuit takes all the middle-frequency input
voltages and keeps their gains high while dropping the gains for very low and
high input voltage frequencies. Indeed, we ask the students to change their ω
to either a very high or a very low frequency and compute the new gain. These
results add points at the left and right sides of the plot in Figure 3 and confirm
their interpretation of the plot.

A further activity is to ask the students to consider several variations on
the source voltage, perhaps a sum of different frequencies as a single source
voltage, e.g.,

E(t) = sin(200t) + sin(2000t) + sin(20000t),

where the respective gains of the components are 1.92 × 10−4 for ω = 200,
5.64 × 10−4 for ω = 2000, and 0.99 × 10−4 for ω = 20000. Clearly, the low- and
high-frequency components have lower gain than the mid-frequency one!

Transfer Functions in Laplace Transforms
One of the objectives in our engineering mathematics course is when possi-

ble to use the vocabulary that our students will encounter in their prospective
engineering disciplines. The notion of the transfer function, indeed, of living
in the frequency domain of the Laplace transform, is something that we discuss
when we do second-order linear constant-coefficient ODE work earlier in the
course. Now that concept pays off as we try to analyze what is going on in this
circuit.

For a differential equation in y(t) with driver f(t), and zero for the initial
conditions,

a y′′(t) + b y′(t) + c y(t) = f(t), y(0) = 0, y′(0) = 0, (6)

the transfer function T (s) is the ratio of the Laplace transform Y (s) of the solution
to the Laplace transform F (s) of the driver, or

T (s) =
Y (s)
F (s)

.

This is almost like our notion of gain, ratio of “out” to “in,” but not quite.
We show how this all fits together in the situation of (6). Taking the Laplace

transform of both sides and incorporating the initial conditions gives

(as2 + bs + c)Y (s) = F (s),
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so

Y (s) =
1

as2 + bs + c
F (s). (7)

and
T (s) =

1
as2 + bs + c

.

We return to our two-loop circuit. We let U(s) denote the Laplace transform
of E(t), the source voltage, and Z(s) denote the Laplace transform of the output
voltage, so that T (s) = Z(s)/U(s).

If we multiply the output transform by a resistance, RLoad, we can get the
Laplace transform of the output voltage using Ohm’s Law E = IR.

If we consider the amplitude of each of the transforms U(s), T (s), and Z(s),
we see that the amplitude of T (s) is

amplitude of Z(s)Rload

amplitude of U(s)
.

Using iω for s will permit us to understand the amplitude (or gain) ratio at a
particular frequency ω, while plotting |T (iω)| permits us to see the gains for all
values of ω.

We explain the previous paragraph in a more general setting—and thereby
show the power of the transfer function—by examining a general second-order
linear constant-coefficient ODE,

ay′′(t) + by′(t) + cy(t) = f(t),

with driver f(t) = C sin(ωt) and initial conditions y(0) = 0 and y′(0) = 0.
The solution has a transient portion, which in our case will go to 0 quickly,
leaving only the steady-state portion of the solution, namely A(ω) cos(ωt) +
B(ω) sin(ωt), where the coefficients of cos(ωt) and sin(ωt) (A(ω) and B(ω),
respectively) are real functions of ω. Now y(t) and A(ω) cos(ωt) + B(ω) sin(ωt)
differ, after a very short time, by a negligible transient solution, thus we write

y(t) ∼ A(ω) cos(ωt) + B(ω) sin(ωt).

So let us compute the Laplace transform of all the terms in the steady-state
solution only and examine the transfer function as it applies to the input voltage
only:

F (s) =
Cω

s2 + ω2
and Y (s) =

A(ω)s
s2 + ω2

+
B(ω)ω
s2 + ω2

.

The transfer function is then

T (s) =
Y (s)
F (s)

=
A(ω)s
s2+ω2 + B(ω)ω

s2+ω2

Cω
s2+ω2

=
A(ω)s + B(ω)ω

Cω
.
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We substitute s = iω into T (s) and see what happens. We have

T (iω) =
A(ω)iω + B(ω)ω

Cω
=

A(ω)i + B(ω)
C

and we obtain

|T (iω)| =

√
A(ω)2 + B(ω)2

C
, (8)

since the terms A(ω), B(ω), and C are real. We see that |T (iω)| gives the
amplitude of the steady state output function y(t) = A(ω) cos(ωt)+B(ω) sin(ωt)
divided by the amplitude of the input function f(t) = C sin(ωt). This ratio is
simply the gain. This is an “Aha!” moment, for we see that by taking the
absolute value (magnitude) of the transfer function, T (s), with iω substituted
for s we easily produce the gain for any ω.

Returning to the case of the circuit, Mathematica can show that the transfer
function T (s), which is the Laplace transform of the output voltage across
Rload, i.e., Z(s) · Rload, divided by the Laplace transform of the input function
u(t) = sin(ωt), i.e., U(s) = ω/(s2 + ω2), is simply

T (s) =
2000s

2 × 106 + 3400s + s2
.

When we substitute s = iω and take the absolute value of T (iω), we obtain

gain(ω) =
∣∣∣∣ 2000ω

2 × 106 + 3400iω − ω2

∣∣∣∣ . (9)

We offer a plot of gain(ω) vs. ω in Figure 4 and then a plot of our student-
computed data over the theoretical gain (see Figure 5).

Figure 4. Plot of gain(ω) for our two-loop circuit.

A picture is worth a thousand words, and so the students see the value of
the transfer function in easily computing the gain for the circuit. They can also
see qualitatively that gain(ω) gets small as ω increases, since the denominator
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Figure 5. Plot of gain(ω) and student data for our two-loop circuit.

of (9) has a term containing the square of ω while the numerator contains ω only
linearly. As ω gets small, they can see that the numerator goes to 0 while the
denominator goes to 2 × 106, hence gain(ω) goes to 0. Thus, the gain on either
end, ω small or big, is small; so this circuit keeps the amplitude of midrange
frequencies high while lowering—considerably—the amplitude of the lower-
and higher-range frequencies: It is indeed a filter!

Conclusion
We have described how we use simple laws of circuits (Kirchhoff’s laws) to

build differential-equation models, with an example of a two-loop circuit for
which students plot pooled data to discern the nature of the circuit.

Further, we have shown how we use the concept of transfer function in
the Laplace transform solution strategy to compute the gain of a circuit as a
function of the input voltage frequency.

All of this is in keeping with our attempt to relate the mathematics in our
engineering mathematics course to the engineering that our students study
and to show them the value of sophisticated tools—in mathematics and in
Mathematica—for their future.
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