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Proof. From the equality (1), for any x 2 R we have

eix ¼
X1
n¼0

ðixÞn

n!
¼
X1
n¼0

ð�1Þn

ð2nÞ!
x2n þ i

X1
n¼0

ð�1Þn

ð2nþ 1Þ!
x2nþ1: ð7Þ

Comparing the real part and the imaginary part of the Equation (6) with the
respective parts of the Equation (7), we have the equalities. œ
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This note discusses the introduction of Fourier series as an immediate application
of optimization of a function of more than one variable. Specifically, it is shown
how the study of Fourier series can be motivated to enrich a multivariable
calculus class. This is done through discovery learning and use of technology
wherein students build the sine Fourier series for the simple function f(x)¼ x and
then generalize to the nth term sine Fourier series for a general function, f(x). It is
shown how the students can then explore the power of the Fourier series to
represent functions.

1. Introduction

We have introduced the study of Fourier series as an immediate application of
optimization of a function of several (many!) variables in a number of calculus
settings. Minimizing the sum of square errors is an obvious application of the
optimization strategy that students naturally see and can develop on their own with
a bit of guidance.

There are a few details we need to cover and we can be off to the fun world of
approximating functions, wild functions with the classical trigonometric family.
We first need to be sure that students are aware of what an odd function is
as we shall confine our introductions to using sine functions only to represent
our sample function. Indeed, we intend to guide the students into discovering
the ‘‘best’’ coefficients b1, b2, b3, . . . , bn to put into a linear combination
fn(x)¼ b1 sin(x)þ b2 sin(2x)þ b3 sin(3x)þ � � � þ bn sin(nx) so that fn(x) best approx-
imates the straight line f(x)¼ x over the interval [��, �]. This includes letting
students decide what is ‘best’ naturally.

Often we have some scenario to motivate our students. At the United States
Military Academy we have told them that a mathematics faculty member at the
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United States Naval Academy (our arch gridiron rival!) has found a bunch of
sinusoidal signal generators which generate sin(x), sin(2x), sin(3x), . . . , sin(100x)
and she does not know what to do with them! It seems that she did not study
any mathematics relevant to this issue in preparation for teaching at said
Naval Academy. Could we at our prestigious Military Academy where Army
officers are educated offer some help? We discuss a number of things from the
students’ backgrounds and see what they know. They know things about musical
instruments, about frequencies and sound synthesizers, about waves, about
vibrations, and about spectrometers. We get them excited about the prospect of
learning how these ideas may be related. We take it easy at first and suppose that we
want to produce the ‘‘signal’’ f(x)¼ x, say on the interval [��, �]. At each stage of
our development we tell the students that we are trying to keep it simple at first and
that we hope to do more exciting things by the time we finish our studies.

We use Mathematica and so it is quite easy to play with plots and produce
comparisons. However, we first send our students to the boards or paper and pencil
and ask them to sketch several ‘one term’ approximations, i.e. f1(x)¼ b1 sin(x), where
they pick the b1 value to get a feel for what values produce good approximations and
what values produce bad ones. For example, b1¼ 1 is the obvious one to start, but
b1¼�1 is another. The latter is not as good as the former, as the latter goes
‘opposite’ they would say, while the former at least stays in the right direction.
Then playing with the amplitude of the one term approximation b1 sin(x) permits
them to see that when b1¼ 1.5 we are better, although we have not suggested a
technical definition of better just yet. It is all just visual judgments. See figure 1.
Which looks better?

After playing with several values of b1, still playing by hand, we see just how
weak using only one sine term is, so we move on to two terms. We offer up plots of
two terms in figure 2. In class we keep students on the board or paper and pencil and
ask them to plot by hand by adding multiples b1 and b2 of the two curves in f2(x)¼ b1
sin(x)þ b2 sin(2x). We do a few and tire of the time it takes to sketch, add, and
resketch the sums. We turn to technology, in our case, Mathematica.

We realize as a class that guessing will not do. We need to develop some criteria
for best and the class discusses this in small groups and ALWAYS suggests
that the area between the curves in the interval [��,�] has to be minimum for
best to occur, i.e. we have to pick the coefficients b1 and b2 so that

Figure 1. Two initial attempts at using just one sine generator sin(x) to approximate f(x)¼ x
on the interval [��, �]. (a) uses f1(x)¼ sin(x) and (b) uses f1(x)¼ 1.5 sin(x).
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R �
�� ðf ðxÞ � ðb1 sinðxÞ þ b2 sinð2xÞÞdx is minimum. ‘Wait,’ one of the students says –

this always happens. ‘These areas could cancel each other out,’ and so we need to

make sure this does not happen. Take the absolute value or square the difference

comes up. They do not like or trust absolute value, so squaring the difference it is.

We remind them of words like ‘least squares’ from their science lab past and present

and we discuss the difference between pointwise differences and differences over the

entire interval, hence the integral. Thus their criteria rather quickly arrived at is to

pick the coefficients b1 and b2 so that the integral of the difference squared between

the function f(x) and the approximation f2(x)¼ b1 sin(x)þ b2 sin(2x) over the interval

[��, �] is minimal, i.e. minimize the following.Z �

��

ðf ðxÞ � b1 sinðxÞ � b2 sinð2xÞÞ
2 dx:

It is a small leap, but the students make it quite easily, to recognize this integral as

a function of b1 and b2, indeed for our function f(x)¼ x we actually compute, in

Mathematica, this objective function:

Sðb1, b2Þ ¼

Z �

��

ðf ðxÞ � b1 sinðxÞ � b2 sinð2xÞÞ
2 dx

¼ �b21 � 4�b1 þ �b
2
2 � 2b2�þ

2�3

3
:

Students are amazed that this will be so simple to minimize as a function of the two

variables, b1 and b2. Indeed the two partials with respect to b1 and b2 are respectively:

@S

@b1
¼ 2�b1 � 4� and

@S

@b2
¼ 2�b2 � 2�:

Solving, for when both partials are 0 (they earlier learned that this is a viable strategy

for finding minima, i.e. taking the partials and setting them equal to 0) we obtain

these values: b1¼ 2 and b2¼�1. The Mathematica command for this is:

Solve ½fD½S½b1, b2�, b1� ¼¼ 0, D½S½b1, b2�, b2� ¼¼ 0g, fb1, b2g�

with output

ffb1! 2, b2!�1gg

Figure 2. Two initial attempts at using two sine generators sin(x) and sin(2x) to approximate
f(x)¼ x on the interval [��, �]. (a) uses f2(x)¼ 1.5sin(x)þ sin(2x) and (b) uses f2(x)¼ 1.5
sin(x)� sin(2x).
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so we can use the technology rather effectively to do our conceptual work. Thus we

now know the best fitting combination of sin(x) and sin(2x) terms is

f2ðxÞ ¼ 2 sinðxÞ � 1 sinð2xÞ

which we immediately plot (see figure 3a) and confirm visually as being better than

those guessed in figure 2.
Immediately several students begin the necessary typing to get three coefficients b1,

b2, and b3 which minimize the integral of the difference squared using three sine terms:Z �

��

ðf ðxÞ � b1 sinðxÞ � b2 sinð2xÞ � b3 sinð3xÞÞ
2 dx:

In a similar manner as with two terms they find these are b1¼ 2, b2¼�1, and

b3¼ 2/3. The students notice that as we add more and more terms the initial best

coefficients stay the same, they do not change. They think that is nice to see, for it

says that they can push to more and more terms and be reasonably confident that the

first terms they found stay the same. This conjecture is confirmed by every step we

take in approximation and in developing the formulae for the Fourier coefficients

later in the development.
A typing frenzy begins as students try to discover more and more terms. A typical

class will try for 6 to 10 terms; this means 6 to 10 partial derivatives have to be set to

0 and all such equations have to be solved. With Mathematica on their side the

students do not hesitate to go after this many coefficients. Indeed, they usually have

no trouble replicating syntax and producing the following set of coefficients:
Students surmise the pattern and others who have typed ahead to 10 terms

confirm this pattern:

bn ¼
�
2

n
, if n is even

2

n
, if n is odd:

8><
>:

b1 b2 b3 b4 b5 b6 b7

2 �1 2

3
�
1

2

2

5
�
1

3

2

7

Figure 3. Best two- (a) and three- (b) term approximations of f(x)¼ x on the interval [��, �].
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OR in one general formula bn¼ (�1)nþ1 (2/n) for all n. This is, of course, a conjecture
based on a few observations, but we praise the conjecture and ask them to recognize
this is NOT a proof for all n. We have convinced ourselves that the pattern looks
good. However, a picture is worth a lot to students at this stage in their mathematical
development and we present them with the summation formula commands in
Mathematica from which they can compute an approximation with a good
many terms.

f½n , x � :¼ Sum½ð�1Þ̂ ðkþ 1Þ 2=k Sin½k 	 x�, fk, 1, ng�

We use this to compute the 20 term approximation, f½20; x�:

f20ðxÞ ¼ 2 sinðxÞ � sinð2xÞ þ
2

3
sinð3xÞ �

1

2
sinð4xÞ

þ
2

5
sinð5xÞ �

1

3
sinð6xÞ þ

2

7
sinð7xÞ

�
1

4
sinð8xÞ þ

2

9
sinð9xÞ �

1

5
sinð10xÞ þ

2

11
sinð11xÞ

�
1

6
sinð12xÞ þ

2

13
sinð13xÞ

�
1

7
sinð14xÞ þ

2

15
sinð15xÞ �

1

8
sinð16xÞ þ

2

17
sinð17xÞ

�
1

9
sinð18xÞ þ

2

19
sinð19xÞ �

1

10
sinð20xÞ

and then plot (figure 4) this 20-term approximation.

2. General fourier series

Up to this point we have not used the word Fourier or even series because we are
confining ourselves to approximations with a finite number of terms, indeed,
we confine our exploration to finding sums of a ‘few’ sine functions to approximate
just one function f(x)¼ x over the specified interval [��, �]. Students are asking in
class if this sort of thing, i.e. better and better approximations with more and more
terms – at least that is what it looks like to them – can be done for other functions
f(x). So we ask them what would have to happen. They are quite quick to write down
a long expression to minimize:

fnðb1, b2, . . . , bnÞ ¼

Z �

��

ðf ðxÞ � ðb1 sinðxÞ þ b2 sinð2xÞ

þ b3 sinð3xÞ þ � � � þ bn sinðnxÞÞÞ
2 dx

¼

Z �

��

ðf ðxÞ � b1 sinðxÞ � b2 sinð2xÞ

� b3 sinð3xÞ � � � � � bn sinðnxÞÞ
2 dx ð1Þ

This poses a rather daunting task for there are lots of cross-terms from the
squaring of such a large expression and then it is inside the integral and we still
would have to integrate. Mathematics offers the development and practice of a
number of problem solving strategies. One of them is to break down a problem into
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simple pieces. So we do a group thrashing about at the board, filling it with
equations, but in reasoned and orderly fashion, to see just what this messy integral of
the differences squared will give us. We give some flavor of this activity here. We first
write out, as in ‘long multiplication’, the product inside the integral:

f ðxÞ � b1 sinðxÞ � b2 sinð2xÞ � b3 sinð3xÞ � � � � � bn sinðnxÞ

� f ðxÞ � b1 sinðxÞ � b2 sinð2xÞ � b3 sinð3xÞ � � � � � bn sinðnxÞ

planning our strategy to actually do the multiplication.
Now, systematically looking into all the possible products we see we have four

types of terms:
Upon examination of these terms, in light of the fact that we wish to find the bk’s

which minimize the sum of squared differences integral in equation (1), we see

that the Type 1 term (actually only one such term) has no bearing on the

minimization and can be ignored. Type 2 terms are clearly of interest as they contain

our variables, bk, and we see that these terms’ contribution to the sum, upon

integration are Z �

��

bkf ðxÞ sinðkxÞdx ¼ bk

Z �

��

f ðxÞ sinðkxÞdx

Type 3 and 4 are similar and we investigate two integrals:

bibj

Z �

��

sinðixÞ sinðjxÞdx for i 6¼ j and b2i

Z �

��

sin2ðixÞdx

The first cases of Type 3 (where i 6¼ j) yield bibjð2j cosðj�Þ sinði�Þ
�2i cosði�Þ sinðj�Þ=i2 � j2Þ in Mathematica. Clearly as i and j are integers then the

terms sin(ix) and sin(jx) are all 0. This means all these integrals are 0. So they

contribute nothing to our minimization problem. Terrific! Now, the second cases of

Type 3 (where i¼ j) yield b2i �� sinð2i�Þ=2i. These terms are all just b2i � as sin(2i�) is

Type 1 Type 2 Type 3 Type 4

f(x) f(x) bk f(x) sin (kx) bibjsinðixÞsinðjxÞ i 6¼ j bibjsinðixÞsinðjxÞ ¼ b2i sin
2
ðixÞ i ¼ j

Figure 4. Best 20-term approximations of f(x)¼ x on the interval [��,�].
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0 for integers i. So the class gathers this information and it appears that equation (1),

the function of n variables, b1, b2, . . . , bn, we seek to minimize, is simply:

fnðb1, b2, . . . bnÞ ¼

Z �

��

ðf ðxÞÞ2 dxþ
Xn
j¼1

2bj

Z �

��

f ðxÞ sinðjxÞdxþ
Xn
j¼1

b2j � ð2Þ

Note that we get two of the terms when i 6¼ j. From equation (2) and our

understanding of optimization of a function of more than one variable we see that if

we are to minimize fn(b1, b2, . . . , bn) then each of the partial derivatives with respect

to b1, b2, . . . , bn, respectively, are derivatives of a quadratic in that respective variable.

So, for example, taking the partial derivative with respect to bj and setting this

derivative equal to 0 yields:

@fnðb1, b2, . . . , bnÞ

@bj
¼ 2

Z �

��

f ðxÞ sinðjxÞdxþ 2bj� ¼ 0

which tells us that

bj ¼
1

�

Z �

��

f ðxÞ sinðjxÞdx, j ¼ 1, 2, . . . , n: ð3Þ

There it is, for a given function f (x) over the interval [��, �] pick the coefficients

bj for the sin(jx) term according to equation (3) in order to minimize the integral of

the squared difference between our sample function and the sine approximation

candidate. We immediately try it for our original case, f(x)¼ x, for which we

‘guessed’ bj ¼ ð�1Þ
jþ1
ð2=jÞ based on a few terms.

bj ¼
1

�

Z �

��

f ðxÞ sinðjxÞdx ¼
1

�

Z �

��

x sinðjxÞdx ¼
2 sinðj�Þ � 2j� cosðj�Þ

2j2�
ð4Þ

In equation (4) since j is an integer the sin(j�) term is 0 and this leaves us with

bj ¼
2 sinðj�Þ � 2j� cosðk�Þ

j2�
¼
�2 cosðj�Þ

j

in which cos(j�) oscillates between þ1 and �1 as j is even or odd, respectively,

i.e. bj ¼ ð�1Þ
jþ1
ð2=jÞ as we had conjectured before. This helps validate a derivation

for students.
As a class we summarize our accomplishment.

Given f (x) defined on the interval [��,�], if we select

bj ¼ 1=�
R �
�� f ðxÞ sinðjxÞdx for j¼ 1, 2, . . . , n then the sum

Pn
j¼1 bj sinðjxÞ is a

reasonable approximation for the function f (x) on the interval [��, �] and as n

increases this approximation appears to get better.

With this accomplishment we use some modest Mathematica code to play with some

functions. We try out these new formulae with our original f(x)¼ x and see the

results of our labour:

f½x � ¼ x;

b½j � :¼ 1=Pi Integrate ½f½x� Sin ½j x�, fx, � Pi, Pig�

g½n , x � :¼ Sum ½b½j� Sin ½j x�, fj, 1, ng�
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We obtain our 20-term approximation fa½x � ¼ g½20; x� (it is the same as when we
built it by conjecture earlier) and our plot of the approximation and the function is
identical to that demonstrated in figure 3. We are good to go! We have developed
a general process. We now share with the students the fact that this is the sine
Fourier series (where n!1 to be a full series and there can be issues with
convergence) and they built it. Congratulations! We go over some history about
Fourier’s work as time permits.

At this point we return to a text (or provide further notes) in which the full
sine–cosine Fourier series over any interval is developed and we discuss issues of
convergence, but the key we stress to the students is that they used their calculus and
Mathematica to develop a powerful concept to tell them how to approximate a
function as a best linear combination of trigonometric, periodic functions. They also
developed the criteria for best. We point out that we developed an approach for odd
functions using sine functions, but general functions will need odd and even
functions, hence the full sine and cosine Fourier series and more general intervals.

As an example of what they accomplish consider the stepwise defined odd
function.

f½x � ¼ If½x > 0, 1, � 1�

and the first 20 terms of the sine-cosine Fourier series they develop. See figure 5.
Such plots get us into discussions of convergence issues at points of discontinuity

and the Gibbs’ phenomena of overjumping at these points, clearly visible on the
plots.

Once let loose the students go for their own functions. Here you see one such
result using the full sine–cosine Fourier series (see figure 6) which can be
accomplished only with technology.

f½x � ¼ If½x > 0, 1þ xþ :1x^2þ8Log½1þ 3x�, � 5� :5x^2 � :6x^3�

Once students have internalized the idea of a series of trigonometric functions to
approximate ANY function over any interval then either through assigned
homework problems or student generated projects we investigate Fourier series
further. We almost always develop the notion of the spectrum to fingerprint

Figure 5. Best 20-term approximations of f(x) defined to be 1 on the interval (0, �] and�1 on
the interval.
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functions and other signals, such as those used in spectrometers in their chemistry

class, sound synthesizers used in popular music, signal analyzers to detect

irregularities in motion of machines through motion detector signals, and voice

recognition units for security. Mathematica is capable of graphically presenting us

with images that reinforce our thinking and learning in all these investigations.

3. Conclusion

We have taken the reader on the same trip we take our students to show how

students develop the Fourier series from rather elementary optimization techniques

applied to the integral of the squared difference between our given function and

a finite number of terms in an approximation. This is a deeply technology-enabled

trip and once at an early destination in the journey our students can see way past that

point, to other representations and applications. We heartily recommend you try this

route with your students.

Figure 6. Best 20-term approximations of f(x) defined by a student on the interval [��, �].
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