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4. Conclusions

In this note, we have described examples from various ®elds in mathematics,
where the same cognitive skills are required. This situation is not rare, and has
been met in []. In [4] we described how the same ¯owchart can describe the
solution of di� erent problems. However, these topics are often met in di� erent
courses, and, generally, students do not notice the similarities between the ®elds.

The simplest way to have these similarities noted by the students is to ask
teachers to point them out explicitly. Another way, better from our point of view,
is to build `integrated courses’, where the same teacher is in charge of various
®elds, and the mathematical notions are not taught according to their speci®c ®eld,
but according to the mathematical thinking they require.

Finally we wish to make the following remark: replace the Euclidean plane (or
3-dimensional space) of the geometry by any vector space with an inner product,
or by a metric space. The metric properties we described in section are still valid.
For example, consider the space of square Riemann-integrable functions on a
closed interval with the inner product de®ned by < f ; g >ˆ

„ b

a
f …t†g…t† dt. All the

metric relations we saw in section have a translation into integral relations. The
same phenomenon occurs, of course, for all the popular metric relations of a course
in Linear Algebra, such as the Cauchy-Schwarz inequality, the triangular inequal-
ity, and so on (cf [5]).
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The note o� ers a general discussion of the use of complex, technology-
based problems and a description of such a problem that is useful in a number
of classes in which optimization is a goal, but modelling is essential. The
problem demands the use of technology and permits a number of attacks. The
problem is essentially to describe (mathematically) the region surrounding a
shopping mall neighbourhood after a high-speed highway is put in place near
the mall. The note shows how students, working in groups, attack the problem
and the issues which surround their solution strategies. This problem and other
problems like it have been used successfully for a number of years in courses,
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devoting several class periods, spread out over 2±3 weeks, coupled with
activities outside of class for student development of a solution strategy. These
types of problems serve to develop visualization skills, verbalization of
mathematical concepts, and implementation of problem-solving notions in
mathematics including optimization, curve ®tting, integration, and symmetry.

1. Introduction

A primary goal, perhaps for some the goal, in teaching mathematics courses is
to enable students to practise problem-solving while learning a body of math-
ematics. This is done to motivate the mathematics and to produce useful `knowers
of mathematics.’ Moreover, many students are truly intrigued with applying their
mathematics and some, many in fact, ®nd mathematics more palatable if there is
something that interests them attached to the study at hand. Good problem solvers
do not just develop skills to solve the problems at the end of each section or even
the review section of the text. They develop a mindset that says, `Bring on the
problem. Let me see what I can do to solve it.’ Good problem solvers know their
tool kit and know how to use the tools in context, not just in abstract or textbook
settings. They know the limitations of certain strategies and the opportunities for
other strategies. Problem solvers learn by doing. They grow in problem formula-
tion, solution, and interpretation skills by experiencing these on a regular basis.
Accordingly, we give students complex problems to solve.

In addition to the need for students to deal with problem complexity there is
the belief that students need to know how to use technology as part of their
expanded problem-solving tool kit. Thus we encourage them to use computer
technology to explore a problem setting and to assist them in approaching the
issues of the problem, if not enabling a full and satisfying solution.

It is for these reasons that over years of teaching we have used complex,
technology-based problems as motivation and as assessment activities in courses.

2. Assessment value of complex problems

Teachers can assess students’ problem-solving skills by observing almost all
aspects of the students’ activities involved in solving these complex problems.
Indeed, in assigning such problems we have a rich opportunity to assess `student
initiative, creativity, and discovery; ¯exibility and tolerance; communication,
team, and group self-assessment skills; mathematical knowledge; implementation
of established and newly discovered mathematical concepts; and translation from
physical descriptions to mathematical models.’ [1, p. 120] Listening is an invalu-
able assessment tool for the teacher while wandering about the room and
responding to calls for help/clari®cation from student groups. One can see, ®rst
hand, students’ abilities to build sophisticated solution strategies from simple
parts, e.g. geometry principles and optimization of functions of one variable in the
case of the problem discussed in this paper. A good assessment instrument to
employ in this setting is a journal describing the process of each group as they
move towards success. Students’ writings o� er descriptions of the process,
including strategies which did not work as well as those that do work, and they
show the state of the students’ problem-solving strategies and how they move
ahead. In simple, one-step problems with routine, algorithmic responses, one tests

922 Classroom notes



D
ow

nl
oa

de
d 

B
y:

 [W
in

ke
l, 

B
ria

n]
 A

t: 
02

:2
0 

14
 M

ar
ch

 2
00

8 

recall mostly, not problem-solving abilities. Only through complex problems can
one really see the students’ thinking out loud while working on a solution.

3. Criteria for good problems
What are we looking for in a good, complex, technology-based problem? We

outline a set of criteria.

. The setting for the problem should engage the student.

. The situation should be interesting, possibly involving a real application.

. The nature of the vocabulary, notions, geometry, etc. should assure reason-
able access at the start.

. There should not be an obvious attack. The front of the problem should be
wide enough to permit several di� erent approaches. Indeed, there ought to
be a number of levels and approaches a� orded by the problem’s complexity
such that there are multiple strategies possible.

. The problem cannot be a simple algorithmic notion and it should not be a
routine end-of-chapter problem. There should be a level of complexity that
o� ers more than just a one- or two-step algorithmic approach.

. The problem should serve multiple goals for the teacher, i.e. help clarify
issues and tools by putting them into contexts and interesting settings for the
students.

. There should be meaningful (not contrived) uses of technology. (Of course,
some readers believe that good problems do not always involve technology,
but when we are trying to emulate a real-world situation we ®nd it wise to try
to use technology in the problem setting.)

. There should be satisfying answers to the questions, `Why is this problem
worth considering? Is it worth my students’ time?’

4. Time issues in assigning and evaluating this problem

Usually we give this and other problems like it over an extended period of time.
Several visits in class are devoted to (1) introduction, (2) touching base to see how
students are initially approaching the problem and to permit sharing of ideas and
strategies among students, and (3) ®nal overview so all are well equipped to go to
their write-ups for ®nal submission.

The total class time spent on the problem should be no more than that of a
traditional period, except that one should spread this time over three di� erent
days. We always assign teams, usually teams of two for a problem of this level,
although teams of three can work. However, with teams of three there may be
some coasting which takes place and we would prefer that ALL students get
deeply involved. Students produce a solid write-up with good mathematics,
documented computer use, and defence of the method, coupled with a summary
or overview of their strategy.

Assigning extended problems of the sort described here is worthwhile and it is
in the spirit of making calculus a leaner and livelier experience [2]. Moreover,
students’ skills are enhanced when they are required to use these skills in new
contexts and settings. Raising the bar, moving our expectations ever higher, as
teachers, will raise students’ attention and energies as well. If we lead them they
will follow, so let us lead them to a higher level of thinking while using the
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fundamental skill set they possess through solving complex problems. This is a
worthy and noble teaching goal.

Team write-ups are always better than individual write-ups, for quite often
there is a self-correcting e� ect in place as one student writes a draft of a section and
another team member does a critical read of the write-up. Thus, the papers read
more smoothly. If one is comfortable assigning group grades, and there are a
number of theories and practical approaches one can use, then groups of two cut
the grading in half; three by one-third! More importantly, students know that in
the world outside academe they will be working in groups and it will serve them
well to practise interpersonal skills, delegation and receipt of responsibility, as well
as constructive feedback.

5. The problem

We o� er up a problem which meets our goals and which we believe any teacher
can use in an appropriate setting. Where could one use this problem? We have used
it successfully in calculusÐsingle- or multi-variable, optimization, or mathemat-
ical modelling courses. We state the problem as we have posed it several times. Of
course one could use di� erent numbers, units, and scenarios, e.g. give the units as
km/h instead of miles/h.

The average driving speed to reach a shopping mall in a suburban area
through unimproved roads is 30 miles/h. People seem to be willing to spend
no more than one hour of driving time to reach the mall. Hence the
`neighbourhood’ of the mall determined by this transportation constraint is
a circular region centred at the mall and having a 30 mile radius.1 Suppose a
new east±west highway is built, passing ten miles due north of the shopping
mall and that the driving speed on the highway is 55 miles/h. Determine the
new `neighbourhood’ for the shopping mall in view of the option to take this
route.

Usually this statement of the problem is all that we give the students. In fact
often during the class, in preparation for the assignment, we simply draw a circle
with the highway about one-third of a radius above the centre and parallel to the
¯oor, we describe the situation, and we ask the students to run with it, either at the
boards or at their desks, usually in teams of two or three.

However, we could o� er a more guided presentation as presented in points (a)±
(f) below. We suggest that giving such guidance takes away from a richer
discussion of the problem formulation. For example, students will debate whether
folks coming in on the highway should go along the highway to a point directly
north of the origin (mall) and then drop south or whether there is some `cut-o� ’
they should take. This evolves into a question of optimality, i.e. what is the path
one should take if one is on the highway to get to the mall in the quickest time?
Using symmetry we can con®ne our discussion to the northeast corner of our
region. For those who live outside the circle, how does one approach the highway?
Does one drop south immediately and then travel west? OR does one cut `cross-
country’ in a somewhat southwesterly direction towards the highway? And if so, at
what angle? Are the angles for the cuto� points the same, i.e. ®rst when to enter the
highway and then when to leave the highway?

(a) Place the mall at O ˆ …0; 0† and place the new highway along the line

924 Classroom notes



D
ow

nl
oa

de
d 

B
y:

 [W
in

ke
l, 

B
ria

n]
 A

t: 
02

:2
0 

14
 M

ar
ch

 2
00

8 

y ˆ 10 (see ®gure 1). Assuming a path that follows the highway from the
starting point …x; 10† to a `cuto� point’ …w; 10† (where x > w) and then
proceeds directly to the mall at …0; 0†, ®nd the distance w that minimizes
the total travel time from …w; 10† to the mall at …0; 0†. Does w depend upon
x?

(b) Using results from (a), ®nd how far out along the highway a vehicle can be
in order that travel time to the mall is one hour or less.

(c) Now consider people north of the highway and ascertain a path of least
time they should take to get to the mall.

(d) Using the results from (c), determine a boundary north of the highway
such that all who are within that boundary can get to the mall in one hour
or less.

(e) What path should people take if they live within the 30-mile circle and
south of the highway to get to the mall in the shortest time? If they live
outside the 30 mile circle and south of the highway?

(f) Now o� er a new neighbourhood for the shopping mall such that all people
in that neighbourhood can get to the mall in one hour or less, using normal
suburban roads and the highway.

6. Assumptions

It is very important that we address assumptions before formulating this
problem. Students will make a number of them and most are needed. Some are
super¯uous. This is the time to recognize the tradeo� between tractability of the
analysis and the reality of the situation. These assumptions will usually include:

. At all times people can drive as the crow ¯ies, i.e. in any direction they need/
want.

. Drivers can enter and exit the highway anywhere along the highway.

. Drivers will travel the path of least time.

. No time is consumed in the switch from highway to 30 mile/h road and back.

Classroom notes 925

Figure 1. Helpful mall ®gure which is suitable for students to suggest di� erent paths from
an arbitrary point …x; 10† to the Mall ˆ O in optimal time through a point …w; 10†.
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. There is instantaneous acceleration.

. There is no slowing of a car due to other tra� c.

. The two speeds remain constant in their domains.

. People south of the highway will go north to the highway and those north of
the highway will go south to the highway.

. We set up an x±y axis system with the mall at the origin …0; 0† and the
highway running along the line y ˆ 10.

7. Student actions and reactions

Now let us consider what we can expect students to do, to gain, and to produce.
We shall use the sketch in ®gure 2 as our reference, but realize that constructing
this sketch is part of the early struggle for the students. Indeed, the ®rst thing
students tend to do is consider how someone living on the highway gets to the mall
both from within the one hour neighbourhood and from without. They are
interested in this because they see right away that it would be worthwhile to
determine just how far out on the highway people can be and still get to the mall in
one hour. In their haste to address this `furthest distance’ issue they will often
make the assumption that the driver simply drives until directly north of the mall
(V) and then makes a sharp left turn (assuming the driver is coming in from the
east), heading straight south to the mall. The goal then is to ®gure out how long it
takes to get to the intersection of the highway and the circular boundary of the one
hour neighbourhood. With the remaining time in the allotted hour, they can travel
at 55 miles/h to the farthest point along the highway, U. Usually someone in the
room suggests that perhaps the perpendicular route to V (see ®gure 2) and down to
the mall may not be the best route in terms of minimizing time. So the point P is
introduced.

The path to get from a typical point …x; 10† (see ®gure 1) to the mall depends
upon the choice of point P ˆ …w; 10† at which one cuts o� the highway and enters
the slower speed region. Students quickly see that they wish to minimize this time,

926 Classroom notes

Figure 2. Mall ®gure with O ˆ Mall, V ˆ vertical entry point to highway, P ˆ entry
point to highway, Q ˆ typical outlying point, R ˆ optimal entry point to highway,
U ˆ furthest point reachable (using an optimal path) along the highway in one hour.



D
ow

nl
oa

de
d 

B
y:

 [W
in

ke
l, 

B
ria

n]
 A

t: 
02

:2
0 

14
 M

ar
ch

 2
00

8 

i.e. ®nd the point …w; 10† which someone starting at …x; 10† should take to get to the
mall in the shortest amount of time. There is usually some discussion about w
being di� erent for di� erent values of x, so we encourage students to experiment
with di� erent numbers for w with follow-up analysis. Some students go right for
the general approach with an arbitrary w. Using `Distance = Rate £ Time’ they
construct a function (of w) for the time T it takes to go from …x; 10† through …w; 10†
to the mall:

T…w† ˆ x ¡ w

55
‡

�������������������
102 ‡ w2

p

30

Performing the usual optimization task of taking the derivative with respect to w
and setting this equal to 0 yields

T 0…w† ˆ ¡1

55
‡ w

30
�������������������
100 ‡ w2

p ˆ 0

The students ®nd that the optimal value of w is 6.50701 and that this position is
independent of x , indeed, note that x does not appear in the derivative, T 0…w†.
Thus, the minimal time it would take to go from the point of intersection (call it
…z; 10†) of the circular boundary and the highway is T…6:50701† ˆ 0:79364 hours,
using x ˆ z ˆ

��������������������
302 ¡ 102

p
ˆ 28:2843 in our formulation of T…w† above. This does

not leave much time for highway driving beyond the 30-mile circle! Of course,
one can play with the speeds in your own modi®ed problem construction to
make di� erent geometric results here and elsewhere in the problem. Now
knowing that we have 1 ¡ 0:79364 ˆ 0:20636 hours left to travel on the highway
we see that we can travel some 0:20636 £ 55 ˆ 11:3498 miles beyond the point
…z; 10† ˆ …28:2843; 10†. Thus we can travel all the way out to the point
…28:2843 ‡ 11:3498; 10† ˆ …39:6341; 10†, the farthest point we can go east along
the highway and still make it to the mall in an hour, in fact, exactly an hour. Call
this point U. See ®gure 2.

We now know what is the best cut from the highway to the mall and how far
out along the highway we can go. It is time to determine the boundary of those
points outside the 30 mile radius circle surrounding the mall and o� the highway
from which we can get to the mall in an hour or less.

We ®rst need to determine just how we would approach the highway from
some arbitrary point outside the 30 mile circle and o� the highway. For this we
refer to ®gure 3. One way to formally do this is to construct a function from point
Q ˆ …a; b†, say, o� the highway which is beyond the circle and northeast of the mall
to see what is the best cut o� (`cut-on’) angle to enter the highway, i.e. what point
R ˆ …c; 10† on the highway will assure minimum time from Q to R, thence along
the highway to P ˆ …w; 10† ˆ …6:50701; 0† and ®nally down to the mall at …0; 0†. If
one does this using optimization techniques to minimize the time as above, one can
prove that the path from Q to R is parallel to the path from P to …0; 0† (the mall).
That is, the angle at which one approaches the highway is the same as the one
which one uses to leave the highway or in terms of lines, the roads OP and RQ are
parallel. Often, students will want to list this fact in their assumptions because they
cannot verify it, but they `know it.’ Some will take several speci®c points and
`prove’ the fact to themselves. In class we enter a lively discussion about what one
knows and what one believes in this setting as well as how one proves things to
intellectual self-satisfaction.

Classroom notes 927
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7.1. Data collection approach to ®nding the boundary
In order to determine the boundary of those points outside the 30-mile radius

circle surrounding the mall from which we can get to the mall in an hour or less,
students often resort to sophisticated trial-and-error techniques. Indeed, they will
try out some points beyond the circle northeast of the mall to see how long it takes
to get to the mall using the `parallel’ approach to the highway discussed above.
They will narrow this to points that are exactly one hour from the mall. Some
students will take several such points and use a spreadsheet to ®t a function
(linear!) to this data. Indeed, they will often include the extremal point
…39:6341; 10† for it is on this boundary as well. Other students will presume this
boundary is a line, because they want it to be a line. They will then ®nd one point
by trial and error and connect it to …39:6341; 10† to form the line whose equation
they can obtain through point-slope methods. Some students will just connect the
point …39:6341; 10† to the point of intersection of the optimal road (OP extended)
away from the highway and the 30-mile radius circle. Some students ®nd two
points by trial and error, neither of which is …39:6341; 10†, to form the boundary
line. There are a great many strategies o� ered, and a discussion of relative and
absolute merit usually ensues.

7.2. Analytical approach to ®nding the boundary
A more sophisticated approach is to pick a general point, say …w ‡ d; 10 ‡ a†,

that is d miles past the cuto� point on the highway, …w; 10†, and a miles o� (north)
of the highway. See ®gure 4. Write out the function

time…x† ˆ
�������������������
w2 ‡ 102

p

30
‡ x

55
‡

����������������������������
a2 ‡ …d ¡ x†2

q

30

for the time it takes to get to the mall from the point …w ‡ d; 10 ‡ a† in terms of
some point …w ‡ x; 10† at which we enter the highway. Then minimize this in
terms of the variable x. Indeed, one obtains x as a function of a and d,
i.e. x ˆ ¡0:650791a ‡ d. Substituting this back into time(x) and then setting

928 Classroom notes

Figure 3. Mall ®gure with O ˆ Mall, P ˆ entry point to highway, Q ˆ typical outlying
point, R ˆ entry point to highway.
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time(x) ˆ 1, one can eliminate the variable x and obtain a relationship between a
and d which must be satis®ed for those points …w ‡ d; 10 ‡ a† which are exactly one
hour away from the mall. This linear function is a ˆ 21:5582 ¡ 0:650791d. From
this one can obtain a relationship between the general x±y coordinates used in
setting up the mall to obtain a true boundary equation y ˆ 35:7935 ¡ 0:650791x. It
is a routine matter to re¯ect this line about the highway line y ˆ 10 to obtain a
boundary south of the highway.

7.3. Final passage to solution
Once we know the actual equations of the boundary lines, we can determine the

points of intersection of these lines and the original boundary of the neighbour-
hood of the mall, i.e. the circle of radius 30 miles centred at …0; 0†. Using these
points and the bounding equations, i.e. upper line, circle, and lower line (see
®gure 5), we develop the necessary integrals to obtain the additional area to add to
the circular area (on the east side of the mall) and then double this to obtain the
total additional area of 201.871 square miles. This, when added to the original area
of º…30†2 ˆ 2827:43 square miles, gives a new mall neighbourhood of 3029.40
square miles for a modest 7.14% increase.

We o� er up a sketch (see ®gure 5) of our area of interest, i.e. the eastern side of
the mall, and note there is a symmetric western side of the mall area.

8. Extensions

This problem about the mall is a challenging one, but we might wish to add
something to make it even more interesting. At least after solving the original
problem it might be worth considering some of the following `complications’
which could occur. Students would have invested a great deal in the problem by
the time these twists are suggested and hence would appreciate the higher levels of
complexity, even if not carried out. Consider the following extensions of the
problem:

(1) Ask for the additional area as a function of the speed permitted on the

Classroom notes 929

Figure 4. Mall ®gure for locating the point …w ‡ x; 10† at which one should enter the
highway in order to minimize the time to get from point …w ‡ d; 10 ‡ a† to the mall.
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highway. So if we increase the speed on the highway what change occurs in
the area of the resulting neighbourhood of the mall?

(2) Find the other new `isotime’ boundaries, e.g. what do all the points for
which you can get to the mall from them in exactly 200 minutes look like in
this new situation; in 120 minutes; in 75 minutes, etc.?

(3) Consider the original problem with a more realistic square grid of roads,
i.e. do not allow mall bound tra� c to be `as the crow ¯ies,’ but rather
restrict tra� c to a reasonable road grid of avenues and streets. The
students must ®rst ®nd out how to determine distances and times between
points in this new grid.

(4) As an additional alternative to this square grid of roads, suppose the
highway does not run parallel to the roads in the existing road grid.

(5) Consider di� erently-shaped highways, e.g. a section of a circular road with
speci®c radius but not centred at the mall, perhaps centred on downtown.
This could be a beltway around the city. Indeed, upon completion of the
project the author placed a sinusoidal highway on the mall and the groans
were quite audible, indicating they understood the increased complexity of
this new problem.

(6) Introduce a second highway with a di� erent speed.
(7) Identify the points inside the circular neighbourhood which would use the

highway to reduce time. Discuss the changes in driving patterns that would
result inside the circular neighbourhood.

(8) Suppose the costs to move materials are di� erent in various sections of the
region and ®nd all the `equicost’ lines for a given cost. This might be of
interest in moving goods to sell into the mall from surrounding areas.

9. Conclusion

We have introduced a problem and a process to illustrate our belief that
complex, technology-based problems are worthy of our students’ time. We have

930 Classroom notes

Figure 5. A sketch of the additional `triangular’ or `wing’ shape mall neighbourhood area
added to the original circular area in the northeast. There is a comparable, but
symmetric area in the northwest as well.
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demonstrated the great potential for investigation, for di� ering approaches, and
for interaction among students. The particular problem we posed is a rich one for
student investigation and there are many more like it to be found in the dialogue
between teachers, in reading non-mathematics source material, and in modifying
existing problem opportunities. We encourage the reader to try such problems
with their students.
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Resources

A Mathematica notebook and an ASCII version of a problem similar to this
problem, with solution and comments is available (under the title `Malled’), as a
part of a larger National Science Foundation project e� ort, `Development Site for
Complex, Technology-Based Problems in Calculus,’ NSF Grant DUE-9352849.
This notebook, along with other problem source material developed with support
of the grant, is available on the World Wide Web: http://www.rose-hulman.edu/
Class/CalculusProbs. Web site preparation was done by Dr Aaron Klebano� , a
bright, young colleague at Rose-Hulman Institute of Technology.
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