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Abstract
We present two applications of systems of ordinary differential equations

concerning excitation of a structure through resonance and we investigate
peak-frequency responses and stabilizationbymeansof a tunedmassdamper
(TMD). The physics, engineering, and mathematics associated with these
phenomena are presented and discussed along with illustrations of how to
use this material with students.

Introduction
The study of differential equations, while often taught in a mathematics

department as a course in solution techniques sprinkled with applications,
could serve as a tool for modeling physical phenomena, thus motivating
students to want to learn more about solution strategies and their interpre-
tation.
Most suchcoursesget to systemsofordinarydifferential equations (ODEs).

Sometimes the study focuses on two-by-two systems of first-order linear
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ODEs, often in the abstract, to introduce notions of eigenvalues, equilibria,
and stability. However, this material can also occur as a result of inquiry
into a simple mixing problem or a modest compartment flow application,
say, to study concurrent or countercurrent diffusion in a kidneydialysis sys-
tem. The study of systems gets a bit unwieldy without a computer algebra
system, such as Mathematica or Maple, which permits elegant graphical
outputs and analytic and numerical inquiries that are otherwise tedious if
confined to paper-and-pencil work. We present several such inquiries and
the role that technology plays in discovery.
In the study of motion, Newton’s Second Law plays a major role in

building second-order linear ODEs. Courses usually use an analogy such as
a spring-mass system (with or without damping) to interpret parameters
and describe what solutions mean. Eventually, through the cases offered
by the quadratic characteristic equation of such an equation, along with
nonhomogeneous or driver terms, one can study effects such as beats and
resonance. Indeed, in our courses we have “played” the solution of such
differential equations using Mathematica’s Play command to produce the
“sound” of the solution.
We introduce a second spring-mass system for the purpose of reducing

resonance, or the peak-frequency response, in a structure, so as to reduce
or eliminate risk of damage to the structure and discomfort for those in the
structure. This addition leads to a system of second-order linear constant-
coefficient ODEs. Such systems can be studied, their solutions rendered,
and their behaviors plotted, to analyze displacements for the structure.
These tasks can be done readily, using technology to offer closed-form so-
lutions (or numerical solutions), for a systemof two second-order equations
or by converting this system into a system of four first-order equations.

Modeling Structures as Spring-Mass
Damper Systems
Inmost differential equations curricula, the spring-massdamper system

for a suspendedmasswith spring and damper (dashpot) or for a horizontal
slider on a frictionless surface, is modeled using Newton’s Second Law of
Motion.
From the wisdom of Wikipedia [2007], we see a working presentation

of Newton’s Second Law:
Observed from an inertial reference frame, the net force on a particle
is proportional to the time rate of change of its linear momentum.
Momentum is the product of mass and velocity. This law is often
stated asF = ma (the force on an object is equal to itsmassmultiplied
by its acceleration).
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Since in our applications themass remains constant,we canuse theF = ma
form of Newton’s Second Law.
Figure 1 depicts a spring-mass dashpot in which a mass is hung on

a spring attached to a fixed surface. As the mass moves up and down,
a plunger in the liquid of the dashpot dampens the motion by offering
resistance to the motion.

Figure 1. Spring-mass dashpot with mass m, spring constant k, and damping coefficient c, and
initial displacement of mass y(0) and general displacement y(t) at time t.

It is worth taking the time to develop differential equations from first
principles in physics, that is, to make immediate use of Newton’s Second
Law using a free-body diagram (FBD); see Figure 2. In an engineering
mathematics course, one can presume that the students have seen the FBD
technique; but even if students have had physics, they may not have prac-
ticed FBDs sufficiently well to launch out on their own. Thus, we patiently
present the problem-formulation strategy involved in drawing and using
FBDs: One needs to find all the forces acting on the mass, sum them, and
set the sum equal to mass times acceleration.
In our situation, we assume that the mass is at static equilibrium, that

is, the downward force due to gravity acting on the mass has balanced out
the upward force due to the restoring force of the spring and the spring
is at rest. This means that we take the displacement of the spring from
this equilibrium point and say that the spring has been vertically displaced
a distance of y(t) m (usually we use MKS units). Our convention is to
denote downward displacement positively (spring extended) and upward
displacement negatively (spring compressed).
We recall Hooke’s Law from high school physics: The restoring force

F = k · y of a spring is proportional to the displacement y with constant
of proportionality k, which in SI units has units Newtons per meter (N/m)
for small displacements. This means that the farther (within reason) that
we stretch (or compress) the spring, the greater the restoring force will be.
By convention, k is positive. (One can actually validate this lawwith a ring
stand, a set of masses, and a spring—all borrowed from your local science
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department stock room, for they always have stuff like this, even if in the
back room!)
All phenomena of this type lose energy, else theywould go forever! One

model of such loss is damping, which presumes that there is a force directly
proportional to the velocity y0 acting opposite to the direction of motion,
which causes the system to lose energy. When we model the spring-mass
system, we envision a dashpot or container of some liquid into which the
mass (or a plunger attached to it) is submerged. As the mass moves, it
meets resistance from the medium; and the faster it travels, the greater the
resistance. The term c · y0 (where c has units N·s/m) is used to reflect this
damping and is an aggregate term that may involve friction in the spring
as well as in the medium. By convention, c is positive.

Figure 2. Free Body Diagram for developing the differential equation for motion of the mass in a
spring mass dashpot configuration.

In a free-body diagram (Figure 2), we use the conventions in which the
positive displacement and positive velocity are downward. In terms of
the mass’s motion, we see that if the spring were extended and traveling
upward—that is, displacement is positive, y > 0 and velocity is negative,
y0 < 0—there would be a spring restoration force −k · y in the upward
direction due to the spring trying to contract, and there would also be a
resistance or damping force −c · y0 in the downward direction (recall that
c is positive by convention and y0 < 0 in this case). Thus, the forces acting
on the mass add to (−k · y − c · y0). Similar analysis in other cases (spring
extended with mass traveling downward, spring compressed with mass
traveling upward, and spring compressed with mass traveling upward)
yield the same result. Analysis of the situation leads to an application of
Newton’s Second Law and to a second-order differential equation. We use
y(t) instead of just y, because position now changes over time:

m · y00(t) = −k · y(t)− c · y0(t) .

Quite often, this second-order linear, constant-coefficient ODE is written
with all the terms involving the variable y on the left-hand side:

m · y00(t) + c · y0(t) + k · y(t) = 0 .

Of course, there need to be initial conditions of position, y(0) = y0, and
velocity, y0(0) = v0, for the problem to be well-posed.
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To solve such differential equations, we can use the usual approach
of conjecturing a solution of the form y(t) = eλt, determining the corre-
sponding eigenvalues of the resulting characteristic equation, and building
solutions fromeigenvalues,while doing the appropriate actions for the var-
ious cases where c2 − 4km is < 0, = 0, or > 0 [Edwards and Penney 1992,
126–135].
The case c2 − 4km 6= 0 leads to a general solution; and depending on

whether c2 − 4km < 0 or c2 − 4km > 0, one obtains corresponding under-
damped or overdamped solutions. The special case c2 − 4km = 0 is called
critically damped and the solution is slightly different in form.
When the situation is underdamped, c2 − 4km < 0, the solutions look

like

y(t) = c1e
−( c

2m t) cos
µ√

4km− c2 t
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∂
+ c2e
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,

with c1 and c2 depending upon the initial conditions.
If c = 0, that is, there is nodampingand the systemcontinuallyoscillates

without losing any amplitude, the solutions look like
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Here ω0 =
p

k/m is called the natural frequency of the system and, if the
second form is used, φ is called the phase.
A good approach to such differential equations is to study the effect of

a driving force (or nonhomogeneous input term), say f(t), on the solution.
Accordingly, the driven differential equation with initial conditions is

m · y00(t) + c · y0(t) + k · y(t) = f(t), y(0) = y0, y0(0) = v0 . (1)

Quite often in engineering applications, the function f(t) is sinusoidal,
say f(t) = F0 cos(ωt), and is used to model earthquake or wind forces
acting on a structure. An alternating voltage imposed on a circuit can be
modeled using these same differential equations [Kreyszig 1999, 118–124].
In the case where c = 0, assuming ω0 6=

p
k/m, the solution to (1) is

y(t) = A cos

√r
k

m
t− φ1

!

+ B cos(ωt− φ2) ,

with A and B determined by initial conditions. If the driver frequency ω
is the same as the natural frequency ω0 =

p
k/m, then we have resonance

and in this case (again with c = 0) the solution to (1)with initial conditions
y(0) = 0 and y0(0) = 0 is

y(t) =
F0

2mω
t sin(ωt)
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and the solution grows without bound. This means that the mass will
continue to oscillate with ever-increasing displacements.
Of course, c cannever actuallybe 0—otherwisewemighthaveperpetual

motion—soresonance is not reallypossible; but the resultingdisplacements
can lead to system failure. However, there is something comparable to
resonance, namely, the frequency that gives the maximum amplitude for
the response. We call this the maximum frequency response.
Here is the steady-state (nonhomogeneous) solution for (1)with c 6= 0:

ss(t) = −F0m cos(tω)ω2 + F0k cos(tω)
m2ω4 + c2ω2 − 2kmω2 + k2

+
cF0 sin(tω)ω

m2ω4 + c2ω2 − 2kmω2 + k2
.

The amplitude of the steady-state solution as a function of input frequency,
ω, is

amp(ω) = F0

r
1

m2ω4 + c2ω2 − 2kmω2 + k2
. (2)

Upon factoring, we see that the denominator in (2) can never be zero and
hence there can never be true resonance or an infinite response in the
damped case.
We obtain amp(ω) in (2) from combining the terms of ss(t) into one

phase-shifted cosine term and denoting its amplitude by amp(ω). The
frequency ω that maximizes the amplitude of the steady-state solution is

ωmax =
√

2km− c2

√
2m

.

This is a calculus optimization problem in the one variable, ω. Figure 3
shows ωmax the corresponding peak amplitude for fixed values ofm, k, F0,
and several values of c, with explicit values given in Table 1.

Table 1.
Peak-frequency response for (1)withm = 1, k = 1, F0 = 1, for c = 1, 1

2 , 1
4 , 1

8 .

c value 1 1
2

1
4

1
8

Peak response frequency, ωmax 0.71 0.94 0.98 1.00

Maximum response amplitude 1.15 2.07 4.03 8.02

FromTable 1, we see that whenwe have damping, i.e., c 6= 0, we cannot
have resonance, but we can reach a maximum response amplitude for an
input frequency equal to the peak frequency of

ωmax =
√

4km− c2

√
2m

in the case of (2).
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Figure 3. Peak-frequency response: Amplitude, of steady-state solution vs. input frequency ω, for
c = 1, 1

2 , 1
4 , and 1

8 . The other parameters are fixed in all cases atm = 1, k = 1, ω0 = 1, andF0 = 1.
The peak is higher for lower values of c, that is, ωmax → ω0 as c decreases.

Tuned Mass Dampers—Notions
We now turn our attention to mitigating both resonance and peak-

frequency responses by reducing the amplitude of the system response
to drivers at or near the respective resonance and peak-frequency response
frequencies using a tuned mass damper.
A tuned mass damper (TMD) is a passive mechanical counterweight for

a structure, consisting of a moving mass (roughly 1%–2% of the structure’s
mass) that is usually placed in the upper portion of the structure. The
purpose of the TMD is to reduce the effects of motion caused by wind or
earthquake. The first uses of TMDs in the United States for large structures
were in the John Hancock Building in Boston in 1977 and in the Citicorp
Center [Morgenstern 1995] inNewYork in 1978. Since then, many different
styles, including active TMDs and pendulum TMDs, have been employed,
while diverse applications have been found through retrofitting on large-
span bridges and highways. Indeed, the current TMD exemplar is the
800-ton wind-compensating damper built into the center of the 508-meter-
tall Taipei 101 in Taiwan [Haskett et al. n.d.], consisting of a huge spherical
mass hung as a pendulum visible from the restaurant on the 88th and 89th
floors. A very recent use of a TMD is in the building of the Grand Canyon
Skywalk [Motioneering2006]. As anexampleof thediversityofuses, TMDs
are also used in the design of surgery tables to mitigate the vibrations of
surroundings [Ming-Lai 1996].
In our engineering mathematics course, we introduce the notion of a

TMDandmodel simple situationswhile addressing a fewadditional issues;
but the topic can be used in any course that teaches systems of ODEs. Tying
the mathematics to real applications—BIG buildings ARE real—interests
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the students and motivates their learning. Moreover, such approaches re-
inforce the mathematics of the moment and the power of mathematics to
model worthwhile situations.
While engineeringmathematics texts do not yet treat TMDs, the practic-

ing engineering communityhas studied them for years and the engineering
education community is bringing the study into a number of its courses,
e.g., vibrations, structures, and dynamics courses [Koo et al. 2005].

Figure 4. Structure modeled as a spring mass dashpot system with mass m, spring constant or
stiffness k representing a restoration force, and damping coefficient c representing loss of energy.
At the top of the structure, the initial displacement is x(0) and general displacement is x(t) at time
t seconds.

Figure 5. Structure of massm1 with additional massm2 mounted atop in preparation for design
of tuned mass damper.

We examine a structure depicted in Figure 4 and consider the spring
constant k as the stiffness of the structure, i.e., the ability of the structure
to restore itself to vertical, and again units will be N/m. We can discuss
both situations, no dampingor dampingwith a term cmeasured inN · s/m.
For simplification in studying the impact of an external force F (t) applied
horizontally to the building, we assume no damping (c = 0) at first, so
resonance can occur. We want to show that we can stop this resonancewith the
addition of an additional mass atop the structure as seen in Figure 5.
Figures 6 and 7 show configurations that model the two-mass system

in which there is no damping in either mass and there is only damping
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in the added mass, respectively. We depict the configuration horizontally
because it is easier to see and create free-body diagrams. The horizontal
displacements in Figures 6 and 7 correspond to horizontal displacements
of massm1 andm2 in the building presentation of Figures 4 and 5.

Figure 6. Horizontal depiction of two-mass spring system (no damping on either mass) with
smaller massm2 serving as tuned mass damper.

Figure 7. Horizontal depiction of two-mass spring system (damping on mass m2) with smaller
massm2 serving as tuned mass damper.

A TMD is modeled as a secondary spring-mass system appended to the
primary one. From Figure 6, we construct a free-body diagram—this is a
challenge for students. Using Figure 6 andNewton’s SecondLaw,we build
the system of differential equations for our two-mass system, our TMD:

m1x
00
1(t) + (k1 + k2)x1 − k2x2 = F (t)
m2x

00
2(t) +−k2x1 + k2x2 = 0 .

In a similar manner, we construct a free-body diagram and the system of
differential equations for Figure 7:

m1x
00
1(t) + c2x

0
1(t)− c2x

0
2(t) + k1x1(t) + k2x1(t)− k2x2(t) = F (t) (3)

m2x
00
2(t)− c2x

0
1(t) + c2x

0
2(t)− k2x1(t) + k2x2(t) = 0 . (4)

Usually, we study F (t) = F0 cos(ωt) to simulate earthquakes or wind.
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Tuned Mass Dampers—Analysis
The real interest in studying the effects of TMDs on a structure is in

minimizing the steady-state response—the long-term effect on the struc-
ture. We seek to minimize “swaying” or oscillations of massm1, especially
excessive swaying, because of danger to the structure and discomfort to the
occupants.
There are several cases:

• neither the structure nor the TMD has damping,
• the structure does not have damping but the TMD does, and
• both the structure and the TMD have damping.

Neither Structure Nor TMDHas Damping
We consider the case in which the governing equations for a driven

structure of massm1 has a TMD of massm2 and neither has damping:

m1x
00
1(t) + k1x1(t) + k2x1(t)− k2x2(t) = F0 cos(ωt), (5)

m2x
00
2(t)− k2x1(t) + k2x2(t) = 0 . (6)

Since our interest is in the steady state, we can take one of two routes. We
can use
• real-valued conjectures for our steady state, determine the coefficients,
and compute the amplitude of the steady state as a function of the input
frequency ω, to see the effect that changing the input frequency has on
our structure and TMD; or

• complex-valued conjectures for our steady state and perform a similar
analysis.

Usually, engineers use the complex-valued approach; however, we pursue
the real-valued approach. Thus, we conjecture the steady-state solutions as
x1(t) = a cos(ωt) + b sin(ωt) and x2(t) = c cos(ωt) + d sin(ωt) and place
these into (5) and (6).
Let us assume the following parameters for the purpose of illustration:

m1 = 10 with m2 = 0.01m1, k1 = 90 with k2 = 0.01k1, that is, the TMD
has a mass of 1% of that of the structure.
The natural frequency of the structure is

r
k1

m1
=

r
90
10

= 3,

and the natural frequency of the TMD is the same,
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r
k2

m2
=

r
0.90
0.10

= 3.

In this way, we obtain the following equations from (5) and (6):

mass m1 : − cos(tω) + 909
10

(a cos(tω) + b sin(tω))
− 9

10
(c cos(tω) + d sin(tω))

+10
°
−a cos(tω)ω2 − b sin(tω)ω2

¢
= 0

mass m2 : − 9
10

(a cos(tω) + b sin(tω)) + 9
10

(c cos(tω) + d sin(tω))
+ 1

10

°
−c cos(tω)ω2 − d sin(tω)ω2

¢
= 0 .

By comparing coefficients of cos(ωt) and sin(ωt) in each of the equations
for mass m1 and mass m2, we have four equations in the four unknowns
a, b, c, d. We compute

a = − 10 (ω2 − 9)
100ω4 − 1809ω2 + 8100

and b = 0. This means that the amplitude of the steady-state solution for
x1(t) is

amp(ω) = 10
ØØØØ

ω2 − 9
100ω4 − 1809ω2 + 8100

ØØØØ .

In Figure 8, notice that there is no amplitude for the structurem1 if the
driver frequency is the same as that of the structure and the TMD’s natural
frequency of ω0 = 3. Also notice that there is a band of frequencies about
ω = 3 for which the response amplitude of the structure is relatively small.

Figure 8. The casewhen neither the structure nor the TMDhas a damper: Response amplitudes (in
meters) of the structural mass m1 vs. driver frequencies F (t) = F0 cos(ωt). The two plots differ
in horizontal scale.

Figure 8a shows awide range forω and Figure 8b shows a narrow range for
ω. However, these give way to “large” amplitudes when the denominator
of amp(ω) is close to zero, that is, when ω is near 2.85 or 3.15.
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Thus, the effect of employing a TMD whose natural frequency is the
same as the structure’s is to remove all oscillation in the structure when
the structure is excited by a force with that frequency. Moreover, there is
a frequency region (operating range) surrounding this natural frequency
in which there is very little oscillation of the structural mass. The broader
this operating range is, the better our system functions, for it means that
the system is “safe” from large-response amplitudes over a wider range of
frequencies. The spikes in Figure 8 could cause trouble in our system; we
could be in a “power up, power down” situation of system response as the
input frequency passes through the two critical frequencies.
A natural question to ask is, “What if the size of the TMD’s mass, m2,

is changed but the frequency of the TMD is kept the same as that of the
structure, that is, we keep

r
k2

m2
=

r
k1

m1
=

r
90
10

= 3,

but increase (or decrease)m2, changing k2 appropriately?” We explore that
situation in Figure 9. In all three cases, where added secondary mass m2

(as a percentage of primary massm1) goes from 1%, to 2%, to 5%, (thin to
thicker), we get total damping at the resonant frequency ω = 3 by adding
the TMD. However, the distance between peaks (the safe region about the
resonant frequency of ω = 3) is widened as we take the TMDmass,m2, to
be a greater percentage of the original mass,m1.

Figure 9. The case when neither mass has damping, i.e., c1 = c2 = 0: Response amplitudes of the
primary system mass as a function of the driver frequency. As the ratio m2

m1
of added secondary

mass goes from 1%, to 2%, to 5%, (corresponding to the thin, thick, and thicker plots, respectively),
the frequency region of low responses to the driver frequency surrounding the natural frequency
of the structure expands.
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Only TMDHas Damping
Using (3) and (4) tomodel a system inwhich the structure is not damped

while the TMD is damped (we use c2 = 0.01), we conjecture a steady-state
solution and proceed as in the previous subsection to find the amplitude
of the structural mass’s motion. This is shown in Figure 10. In this case,
the maximum response for any input frequency ω is not infinite, as in the
case of resonance (c1 = 0); but the response does peak, and it is clear that
at the structural mass’s natural frequency of ω = 3 the amplitude of the
structural mass’s displacement is lowest in the region of concern about the
natural frequency of the structure. That is, the addition of a damped TMD
to the structure helps reduce the oscillation of the structure considerably
and never permits this oscillation to get too high in a region surrounding
the natural frequency of the structure.
Here too we could alterm2, the mass of the TMD, to be various percent-

ages ofm1 and compare the response amplitudes; but we leave that for the
reader to pursue.
What is presented in this case is not optimal tuning: See Koo et al. [2005]

for directions on optimal tuning. Koo et al. [2005, 3], using the terminology
“tuned vibration absorber (TVA)” rather than TMD, say:
Adding damping in the TVA (damped TVA) and tuning it optimally
reduces the two resonantpeaks andbroadens the isolationbandwidth.
However, it occurs with a cost of sacrificing the isolation valley at the
natural frequency.
We see the sacrifice in the isolation value in comparing Figures 8 and 10,

for when the TMD with a damper is tuned less than optimally as we have
offered, the structure does not have a zero response amplitude when the
driver has the natural frequency of the structure.

Figure 10. The case when only the TMD has a damper: Response amplitudes of the structural
massm1 to driver frequencies F (t) = F0 cos(ωt). The two plots differ in horizontal scale.
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Both Structure and TMDHave Damping
Wedo not consider the casewhere both structure and TMDare damped.

Indeed, according toKooet al. [2005, 3], “Inorder to tuneaTVA inadamped
system, one needs to apply a numerical technique to optimally tune the
TVA or use a messy closed-formed solution [9] and [1].” (The citations are
to Nishihara and Asami [2002] and Asami and Nishihara [2003].) This is
beyond the scope of both our teaching intent and this paper.

Conclusion
Peak-frequency response is adampedsystem’s counterpart to resonance

and indicates just what frequencywill excite a springmass dashpot system
the most and how much amplitude there can be due to that excitement.
Tunedmass dampers are currently being used in new structural designs, as
well as in retrofits to existing structures in place, to mitigate the vibrations
imparted to the structure due to earthquakes and winds.
With little addedmaterial to traditionalmathematics texts, the instructor

can demonstrate the practicality and usefulness of differential equations in
modeling real situations in structural design. We have shown how this can
be done with theory and example. We encourage the reader to take the
journey with students and explore these possibilities.

Reflection
The authors (one an engineer and one a mathematician) taught sev-

eral sections of engineering mathematics together, several years ago at
West Point. Each learned from the other—language and symbols, methods
and rationale, and solution strategies used in the respective approaches.
We gained a better understanding of each other’s approaches because we
taught together. We reaffirmed that teaching is learning.
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