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We present a data collection and analysis project which permits individual
creativity and group work, non-linear curve fitting, parameter selection, and
comparison between analysed groups. This clas: activity has been done with
and without the software discussed in the paper. The project has been done
with calculus students and could be done with any group of students familiar
with functions, plotting data and perhaps logarithms.

1. Introduction

We all learn best when we learn actively. In a calculus course we have used a
project in which students collect data, analyse the data, and formulate conclusions
about different groups of subjects. The project can be done in one or two hours of
class time with about a week to collect the data outside of class. Students decide
how to collect the data, how to analyse it, and how to compare their analyses for
different groups of subjects. In this paper we des:ribe the project.

The requisite mathematics for this project is familiarity with functions,
plotting data, and perhaps logarithms. The approach we offer involves the com-
puter algebra system, Mathematica. One could use any other such system, a
spreadsheet, calculator technology, or, indeed, plotting by hand. The technology
is not the issue. The opportunity to challenge the students and give them a window
for creativity in their mathematics classroom is tte essence of this project.

1.1. Equipment needed

e 5-10 small rocks or stones (use stones of the same density, try to get them
smooth without jagged edges, and make them in the 50-150 g range);

o 100 g mass from an old science lab scale set (use this as a standard mass or in
lieu of the lab piece you can use a rock of ‘kniown’ mass as the standard with
which you compare the other rocks);

e showbox or small container to hold the rocks and the standard mass;

® pencils, attached by string to the table or box, and forms (described below)
which are used to anonymously collect data;

e table on which to set out this equipment (table should be in a public area

where students, faculty, and staff can see it, but in a ‘protected’ area where it

would not be subject to ‘vandalism’);

‘ballot box’ used to collect respondents’ forins.

1.2. The experiment
The goal of this project is to determine how good people are at distinguishing
between different masses. Accordingly, set out some 5-10 rocks in the 50-150¢g
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range and a standard mass of 100 g. Label the rocks in random order, 1,2,3,...,9,
say. (Do not label them in increasing mass order!) Identify the standard mass and
its actual mass for the respondents.

Ask participants to indicate whether or not the sample rocks are of greater mass
then the standard mass. Provide a slip of paper in which to ask them some
information for later references, e.g. their major, their position (student-under-
graduate or graduate), faculty and discipline, administrative, staff, etc. Do not ask
for names unless you wish to have a contest for ‘best’ guesses.

The real information is respondent opinion on whether the mass of the rocks,
numbers 1,2,3,...,9, are more than the standard mass. Provide a form such as the
following:

Sample rock number 1 2 3 4 5 6 7 8 9
Check if mass >100g

Set the collection table out for whatever time is reasonable to get sample data—
one week will be sufficient especially if there is a sign, with words like ‘Rock-A-
Rama’, ‘Let’s Rock’, ‘Science Experiment’, or “‘Which Major is More Perceptive’,
and some catchy graphics.

Once the data are collected, compute the percentage of respondents who say
that a given rock has mass greater than the 100g standard mass. Plot this
percentage against the actual mass of the given rock.

If respondents had perfect knowledge, e.g. a scale, the plot of the returned data
would look like the plot in figure 1.

If all or more respondents guessed then the plot of the returned data could look
something like the plot in figure 2. A reasonable population with nine sample
rocks, e.g., 10, 40, 70, 90, 100, 120, 125, 150, 175 g might yield the plot in figure 3.

1.3. Statement of the problem and first actions
Fit a curve (or curves) through the response data, perhaps attempting to
differentiate groups with a parameter or feature in the graphs we obtain for
different groups. We might even wish to rank the groups based on this
criteria, e.g. can geology majors differentiate rock mass better than political
science majors?

Students will always, always plot data first, which is a sign of good modelling

skill that we work hard to inculcate in them. In our first class period devoted to this
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Figure 1. Plot of responses from respondents who had perfect knowledge. Percentage of
those who say rock of Mass has more mass than 100 g mass.
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Figure 2. Plot of responses from respondents’ guesscs. Percentage of those who say rock
of Mass has more mass than 100 g mass.
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Figure 3. Plot of typical responses from respondents. Percentage of those who say rock of
Mass has more mass than 100 g mass.

project, we have the students conjecture what the Jdata response might be. Based on
their understanding of the possible variables (mass of rock, percentage who say
mass of rock is more than 100 g standard mass) and their response to figure 1 the
students are convinced that the data should be S-shaped. Moreover, they quickly
convince themselves that the more vertical the central section about the 100g
standard mass is, the better the ability of the respondents to distinguish masses.

Thus the hunt is on for S-shaped curves. A first model students often
conjecture is some form of the arctan, perhaps, f(x) = arctan (a(x — b)) with
constants a and b to be determined by some best fitting criteria. Incidentally,
one could have a discussion about such criteria at +his point or offer up minimizing
the sum of the squares between the observed data and the predicted data from the
model for the data points gathered, the so-called least squares approach. We find
that students, through minimally guided discussion, arrive at the ‘natural’ least
squares criteria.

Depending on where the class is in terms of topics, this project might be either
an introduction or a summary project to a unit on the minimization of a function of
several variables, e.g. the parameters a and b in the model function offered above.
The function here is the sum of the squares between the observed data and the
predicted data from the model for the data points gathered. Or, if you trust your
software sufficiently, it might be an introduction to fitting functions to data with
little understanding of the underlying minimization algorithm.

Some of the S-shaped curves include
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fi(t) =1/(1+ aexp (—b1))
A =1/(1+a)

f3(t) = aexp (b/t)

f4(t) = arctan (a(x — b))

It should be noted that students generally go after functions which are
asymptotic to 1 as t increases and asymptotic to 0 as ¢t decreases. Some even insist
that the function go through the point (0, 0) arguing the fact that it makes no sense
to have values of t < 0 where ¢ represents mass of sample rock. This insistence is
usually dropped in the face of attempting to get a function to do too many things.

Several students will suggest a polynomial (a cubic at least), but others will try
to argue them out of this in lieu of the flattening which they deem important at
either end of the mass of rock scale, a flattening which a polynomial does not
possess. Thus polynomials are usually not assumed. One reason for pushing a
polynomial is the fact that in software such as Mathematica it is easy to fit a
polynomial, say of degree 3, to a data set data. One uses the command p[x_] =
Fit[data,{1,x,x"2,%x"3},x] to find a third-degree polynomial p(x) which
will fit the data.

1.4. Timeline and student action issues

This activity can be done as a long-term project over several weeks from
formulation through collection and on to analysis or short term exercise if the
collection devices are in place. We have used groups all the time and we permit the
groups to go their own way and develop their own analysis within the context of
class sharing and discussion so that all benefit from each group’s wisdom. The
class time devoted to this project is a wonderful time to bring misconceptions and
issues out in the open. Indeed, we have found doing such complex problems with
students to be a rich time to assess students’ capabilities and attitudes [1].

This is a sure starter as students form quick convictions as to what they believe
will happen and they like the idea of designing a data collection station and
collecting data from their classmates. There is the slowdown when they come to
the following: ‘We have the data. Now what do we do?’ This is where the teacher
comes into play, guiding the discussion to bring out as many ideas as possible from
the students. Collectively the students have the necessary ideas to do an excellent
job. They will need technical guidance, technology assistance, and continual
encouragement to complete an analysis and summarize their conclusions.

2. Analysis of the data for selected model

Having selected one of the four models above for example, there are
several approaches one can now pursue. Traditionally we often ‘linearize’ both
model and data and then try to fit a straight line through the data, either visually
or with some linear regression package, perhaps on a calculator or in some
computer package. Certainly Mathematica makes this easy with the command
1[x_] =Fit[1data,{1,x},x] to fit a linear function I(x) to the linearized data
set ldata.

We offer a table of the linearized forms of the functions (table 1). Keen and
Spain did a nice job of offering up possible function models for fitting to data [2, p. 56].
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y=1/(1+a exp (—bt) _SAWI_V =In(a) — bt
y=1/1+at®) FAWI_U =In(a)+ bln(z)
y=aexp (b/t) In(y) = In(a) +@W

y = arctan (a(x — b)) tan(y) = at—ab

Table 1. Linearized models for use by students in fitting data.

Rockmass 10 40 70 90 100 120 125 150 175

Percentage 2 10 21 45 50 65 75 90 98

Table 2.

To apply this linearization approach students have to convert the data from the
form {(t;,y:)li =1,2,...,n} to a linearized data set. If the model used is fi(¢) =
1/(1 4+ aexp (—bt)) the linearized data set will look like L = {(#;,In(1/y; — 1)}]
i1=1,2,...,n}. When we plot this linearized data from L we might well see a linear
trend, obtaining —b as its slope and In(a) as its vertical axis intercept, thus
obtaining a and b easily.

In a course where there is access to Mathemtica one can form the sum of the
squares between the observed data and the predicted data from the model for the
data points gathered as a single function of the two parameters a and 4 in the
model. From this one can minimize this sum of squares with Mathematics’s
FindMinimum command.

We consider a typical data set one might get back for a sample of nine rocks set
out with a 100 g standard mass for comparison. This data set is plotted in figure 3
and table 2.

In Mathematica we can enter the data as:

data={{10,.02},{40,.1},{70,.21},{90,.45},{100,.5},{120,.65%,
{125,.75%,{150,.9},{175,.98}};

If we had chosen model f(¢) = f1(t) = 1/(1 + aexp (—bt)) we could form the sum

9

h(a,b) = > (f(t:) — i)°

i=1
9
= MUG\G + aexp (--by;)) — ?.vm

In Mathematica we would type:

hfa_,b_]=sum[(f[datal[il1[[1]1]] -datallil]l(([2]])" 2,
i, 1, Length[datal}]
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Figure 4. Plot of sum of squares function h(a,b) in the interval 0 < a < 100 and 0.03 <
b < 0.05. The dark region contains the lowest values of the function and hence a good
place to look for the minimum value for A(a,b).

Here f[datal[[i]1[[1]]1] isf applied to the first coordinate of the ith data pair,
i.e. f(¢t;), the predicted value under the model f, while datal[1]]1[[2]] is the
second coordinate of the ith data pair, i.e. y;, the observed value we wish to
compare to the predicted value in the least square sense.

We now need to determine the parameters a and b which make 2(a,b) mini-
mum. Continuing in Mathematica we could get a look at the contour plot of this
function to attempt to see where a possible minimum might occur in order to start
our root finding algorithm off with a good seed (figure 4).

Finally, we could apply the FindMinimum command with reasonable starting
points to get values of @ and b which minimize %(a, b).

s0ll =FindMinimum[hl([a,b],a,40,b,.02]
We would obtain the following:
0.00601426, a->53.9126, b->0.0401633

where 0.006 014 26 is the actual minimum value of /i(a, b), the sum of squares, for
values @ = 53.9126 and b = 0.040163 3.
Thus our best fitting function of the form f(z) = 1/(1 4+ aexp (—bt) is actually

1
"1+ 53.9126 exp (—0.040163 3¢)

f(9)

We show this best fitting curve ploted over the data for ‘eye’ confirmation (figure
5).

We could perform the same analysis with this data set for other models and
compare our fits, perhaps comparing the sum of the squares as returned by
Mathematica. An interesting discussion arises when we compare the fits we obtain
from the linearized and the original data set fits. They are not the same! We
consider the question, “Which is better?’

3. Comparison between populations
We turn to the problem of a number of different populations for whom we have
grouped responses, e.g. geology majors, mathematics majors, and English majors.
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Figure 5. Plot of our best fitting function f(¢) = 1/(1 + 53.9126 exp (—0.040 163 3¢)) for
our data set with the date itself.

Students are asked to compare the groups and perhaps determine which group is
‘best’ at distinguishing masses. Often the paramet:r which 1s offered, assuming the
same model is fitted, is the corresponding least sum of squares. In seeking other
parameters for comparison, one could go back to seeing how far from perfect each
group is by simply taking the sum of squares bewcen observed and ‘perfect’ values
(figure 1) and comparing these numbers. Finally, one could use the ‘steepness’ in
the centre of the fitted plot, i.e. find where the first derivative is maximum and
compare maximum first derivative values. This idea comes from the fact that the
perfect knowledge model (see figure 1) has ‘infinite’ steepness at the 100 g mass.

4. Conclusion
We have presented a project which permits data collection and analysis,
individual creativity and group work, non-linear curve fitting, parameter selection,
and comparison between groups. Students’ opinions are valued and they are
required to back them up with analysis and cominunication.

Source and acknowledgement

A Mathematica notebook and an ASCII version of this problem, with solution
and comments is available (under title ROCKRAMA), as part of a larger National
Science Foundation project effort, ‘Development Site for Complex, Technology-
Based Problems in Calculus’, NSF Grant DUE..9352849. This notebook, along
with other problem sources material developed with support of the grant, is
available on the World Wide Web under the address: http://www.rose-hulman.
edu/Class/CalculusProbs. Web site preparation was done by Dr Aaron Klebanoff,
a colleague at Rose-Hulman Institute of Technology.
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