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Abstract: We discuss the introduction and teaching of partial differential equations

(heat and wave equations) via modeling physical phenomena, using a new approach

that encompasses constructing difference equations and implementing these in a

spreadsheet, numerically solving the partial differential equations using the numerical

differential equation solver in Mathematica, and analytically constructing solutions

from reasoned building blocks. We obtain graphical feedback as soon as possible in

each approach and permit ‘‘what if’’ modeling wherever possible. This approach is

contrasted with the usual Fourier series development and series solution using bound-

ary value solution strategies.

Keywords: Mathematical modeling, partial differential equation, heat and wave

equation, numerical solution, difference equation, spreadsheet, Mathematica, analytic

solution, graphical feedback.

PARTIAL DIFFERENTIAL EQUATIONS IN UNDERGRADUATE

MATHEMATICS

Partial differential equations (PDEs) appear in a wide variety of course

settings and in a number of levels of mathematical sophistication throughout

undergraduate mathematics curricula. At a relatively simple level, they can

be found immediately after the introduction of partial derivatives in a multi-

variable calculus course in exercises that require students to confirm that a

given function of more than one variable satisfies a given PDE. At the other

end, because of their intrinsic mathematical richness, PDEs can be the focus

of a high-level course that requires familiarity with at least the basics of

analysis. In between, PDEs are often associated with applied mathematics, as

in a course in mathematical methods for physicists or engineers or more

recently in financial mathematics.
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While the most mathematically sophisticated aspects of PDEs are

beyond the undergraduate curriculum, the solution of linear, constant-

coefficient PDEs requires only the basics of multivariable calculus.

Moreover, the classical second-order equations (the heat equation, the

wave equation, and Laplace’s equation) have both a long mathematical

history and accessible physical applications. Thus, not surprisingly, many

introductions to PDEs start with these equations (cf. [3–5]). The most

common approach to the solution of these linear partial differential equa-

tions is the technique of separation of variables. In contrast, in this article, we

offer some alternative approaches to the study of evolution equations, the

heat and wave equations.

We note that separation of variables leads immediately to boundary-

value problems and Fourier series. Therefore, when taking the standard

approach to PDEs, the instructor must decide whether to do Fourier series

first or to have them motivated at the moment of need in the solution

algorithm for the PDEs. When we have taken this route, we have elected to

introduce the Fourier series first and to ask students to derive Fourier

coefficients from a least squares criterion with graphical feedback (cf. [7,8]).

When teaching this course, we pause to play with the power of the Fourier

series in sound applications, spectral analysis, and signal processing. Once

armed with the notions of Fourier series, the dive into separation of variables

offers a wonderful place to see the Fourier coefficients emerge in the devel-

opment of the infinite series solution in which the coefficients are the Fourier

series for the initial conditions. Similarly, as described in this article, we

introduce the analytic solution of the heat equation some time after the

discussion of Fourier series.

Over the years we have followed the approach described within two

settings: (i) a mathematical modeling course for mathematics majors and

(ii) a post-calculus engineering mathematics. In both cases, we have empha-

sized the exploration of the solutions of PDEs and the interplay between

physical and mathematical intuition in the study of PDEs as mathematical

models of physical phenomena. We usually study two physical phenomena:

(i) heat flow in an insulated bar, modeled by the one-dimensional (in space)

heat equation and (ii) the transverse oscillations of a string held down at

both ends, modeled by the one-dimensional (again in space) wave equation.

For the heat flow modeling we usually give our students a guided opportu-

nity to build their own model (as outlined below). For the latter, we

typically refer to the course text [5] and/or an exceptionally clear exposition

in a well-known text [3] and do not spend significant course time on the

derivation. Instead, the class moves directly to an examination of the

solutions. As noted, these equations are, of course, two of the three standard

second-order equations studied in a first course on PDEs. Our approach is

therefore not distinguished by the equations studied but rather by our

method of approach.

162 Myers, Trubatch, and Winkel
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MATHEMATICAL MODELING

Wherever possible, we incorporate either modeling from first principles (e.g.,

Newton’s laws of mechanics) or from data sets used throughout the mathe-

matics curriculum at the United States Military Academy. In some cases the

modeling is used to motivate the study of the mathematics, while in others

the modeling is in the application of the mathematics under study. In this

article, we demonstrate both cases.

Modeling takes time, both with in-class activities and out-of-class

assignments. When in class, faculty must give time for students to discover

strategies and solutions on their own, perhaps with some teacher direction or

guidance. It is very important to let the students feel the uncertainty of the

moment in which small and cautious steps, some good and some bad(!), are

taken in the model-building process. This is best done in small groups so that

no one student faces the situation alone. The groups usually generate (and

reject) many ideas and will move out on their own. However, it is a good idea

to interrupt the process in class to ask one group that is making particularly

good progress to share their process and conclusions. Other groups might

then redirect their efforts because of these presentations, but they bring their

own ideas and experience to this new level of modeling based on communal

knowledge. Occasionally, faculty lead or summarize the steps for success in

modeling, but the students, having invested time and intellectual capital in

the process are truly shareholders, not just consumers, of such teacher-led

time.

Usually, it is a good idea to ask students to do extensions of the model

under consideration for homework or project activities, sometimes with

significant change in the model and other times using the model derived

for computational efforts along with ‘‘what if?’’ study with various para-

meters and physical interpretations. In our experience the flow from physical

phenomena, to equation formulation, to numerical solutions, and then to

analytic solutions, holds students’ attention, as it gives them ownership and

the ability to practice both equation formulation, solution strategies, and

interpretation of solutions. Moreover, a continuing emphasis on the graphical

representation of solutions makes the subject concrete.

MODELING HEAT CONDUCTION IN A THIN ROD

Overview

We consider a conducting rod of length L with constant cross-sectional area

A. The rod is insulated along its lateral surface so heat is constrained to flow

along its length. We make the (reasonable) simplifying assumption that the

material is uniform and unchanging throughout the experiment, except for its

Teaching Modeling with Partial Differential Equations 163
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heat energy content. Moreover, inside the bar, heat energy is neither created

nor destroyed (e.g., by a chemical or radiological process). The variable x is

the distance measured along the rod from left to right (see Figure 1). The

function u(x, t) is the temperature of the rod at position x and time t from the

start of the experiment.

We direct the students to focus on a small ‘‘plug’’ of rod between x and

x + Dx. Our strategy is to give the students enough grounding in physics and

time for discussion so that they can obtain expressions for the rate of change

of heat energy in the plug of the rod in two different ways: (i) the (time) rate

of change in the thermal energy in the plug and (ii) the net change in heat

energy due to the heat flow at each of the two ends. The equality of these two

rates (as required by conservation of heat energy) then leads to the partial

differential equation that governs the evolution of the temperature distribu-

tion (namely, the heat equation).

Standard Derivation

To compose expressions for the two rates of change we rely on two basic

physical laws:

Law 1 The amount of thermal energy in the body is proportional to the

temperature of the body times the mass of the body.

Law 2 Thermal energy flows across an uninsulated interface at a rate

proportional to the area and the temperature gradient. (The temperature

gradient is the rate of change of temperature with respect to distance

where the distance is taken perpendicular to the area).

We usually get the students to articulate these laws in small groups and

then structure them with the above wording. For the students to proceed to

build a model, they also need some technical terms. Moreover, they need to

be reminded, constantly, to keep track of units!

To determine the expression for the time rate of change in the amount of

thermal energy in the plug we first build an expression for the amount of

thermal energy in the plug. This calculation follows from Law 1 with careful

Figure 1. ‘‘Plug’’ of a thin conducting rod.

164 Myers, Trubatch, and Winkel
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attention to units:

thermal energy ¼ c
cal

g ��C

� �
�

g

cm3

h i
A cm2
� �

�x cm½ � uðx; tÞ �C½ �;

where c is the specific heat and � is the mass density. Canceling units, we have

the following expression for the amount of thermal energy in the plug:

thermal energy ¼ c �A �x uðx; tÞ ½cal�:

From this, we obtain the (time) rate of change in the thermal energy in the plug as:

rateofchange ¼ @

@t
thermal energy ¼ c �A �x utðx; tÞ

cal

min

� �
; (1)

where, following our previous assumptions, the dimensions of the rod and its

specific heat are constant.

We then compute the time rate of thermal energy going into (out of) the left

side of the plug and the same on the right side of the plug. From Law 2 we have:

heat flow into rod at x
cal

min

� �
¼ �k A ½cm2� @u

@x

����
x

�C

cm

� �
;

heat flow into rod at xþ�x

cal

min

� �
¼ k � A ðcm2Þ � @u

@x

����
xþ�x

�C

cm

� �
;

where the units of k, the thermal conductivity, must be cal
min �cm��C. The net flow

of thermal energy into (or out of) the plug is therefore

net heat flow ¼ kA½uxðxþ�x; tÞ � uxðx; tÞ�
cal

min

� �
(2)

As noted above, invoking the principle of conservation of energy, we equate

(1) and (2). Simplifying and omitting the units, we obtain:

utðx; tÞ ¼
k

c�

uxðxþ�x; tÞ � uxðx; tÞ
�x

: (3)

Then in the limit as Dx ! 0 we obtain the partial differential equation:

ut ¼ �uxx (4)

where the constant � ¼ k
c�, the thermal diffusivity, has units of cm2/sec.

Equation (4) is the standard one-dimensional heat equation.

In order to have a completely posed initial value problem, we need infor-

mation about the initial temperature distribution in the rod; i.e., u(x, 0) = f(x) for

Teaching Modeling with Partial Differential Equations 165



D
ow

nl
oa

de
d 

B
y:

 [W
in

ke
l, 

B
ria

n]
 A

t: 
20

:4
0 

12
 M

ar
ch

 2
00

8 

some given function f(x). Furthermore, we need to specify conditions at the ends

of the rod; e.g., u(0, t) = h1(t) and u(L, t) = h2(t), where h1(t) and h2(t) are

known functions of time.

Before designing and implementing a numerical scheme to solve the heat

equation, we ask students to predict the behavior of the thermal energy based on

their physical intuition. For example, with the conditions u(x, 0) = f(x) = x(L�x)

and, at the boundaries, u(0, t) = h1(t) = 0 and u(L, t) = h2(t) = 0 (i.e.,

frozen), students will, in general, correctly predict that the initial tem-

perature distribution is symmetric about the longitudinal midpoint of the

rod and that the heat will escape through the ‘‘frozen’’ ends until the rod

has a uniform temperature of 0�C. In fact, in our experience, they can

sketch a solution over the x-t domain that looks qualitatively like the

exact solution.

Alternative Derivation

An alternative derivation of the heat equation follows from an alternative

form of Law 2. If one thinks of each plug as so small that it has no

temperature gradient across itself, then there is a jump in temperature at

each of the interfaces. Accordingly, Law 2 is modified to:

Law 2´ Heat flows across an uninsulated interface at a rate: proportional to

the area of the interface, proportional to the difference in temperature and

inversely proportional to the length of the plug.

To write Law 2´ in mathematical form, we denote the temperature in the nth

plug as un. For the net heat flow, one then obtains the expression

net heat flow ¼ k
A

�x
ðunþ1 � unÞ þ k

A

�x
ðun�1 � unÞ;

which can be rewritten as:

net heat flow ¼ kA
unþ1 � 2un þ un�1

�x
: (5)

In this notation, (1) is rewritten as

rate of change ¼ d

dt
thermal energy ¼ c�A�x

d

dt
un: (6)

Then, to obtain the heat equation, we again invoke the principle of

conservation of energy and equate (6) and (5), which yields:

d

dt
un ¼

k

c�

unþ1 � 2un þ un�1

�x2
: (7)

166 Myers, Trubatch, and Winkel
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Now, because the temperature is constant in each plug, we can identify un

with the temperature on the left-hand side of that plug, un(t) = u(nDx, t).

Thus, (7) is equivalent to

@

@t
uðx; tÞ ¼ k

c�

uðxþ�x; tÞ � 2uðx; tÞ þ uðx��x; tÞ
�x2

;

where x = nDx. In the limit as Dx! 0 we again obtain the partial differential

Equation (4).

We remark that Law 2´ is consistent with Law 2 in the limit as the width

of the plug goes to zero. Thus, in some sense, the standard derivation that

makes use of Law 2 requires taking the limit Dx ! 0 twice, while the

alternative derivation requires taking the limit only once.

MOVING TO DIFFERENCE EQUATIONS AND A SPREADSHEET

IMPLEMENTATION

Numerical scheme

For the purpose of numerical simulation of the heat equation, we have the

students approximate the continuous partial differential Equation (4) with a

partial difference equation. To do this, they need to revisit the definition of

derivative that they applied in converting Equation (3) to a partial differential

equation. The time-evolution can be written as:

utðx; tÞ ¼ lim
�t!0

uðx; t þ�tÞ � uðx; tÞ
�t

Therefore, the left-hand side of the heat equation in Equation (4) can be

replaced by the finite difference

utðx; tÞ �
uðx; t þ�tÞ � uðx; tÞ

�t
: (8)

Similarly, we have

uxxðx; tÞ ¼ lim
�x!0

uðxþ�x;tÞ�uðx;tÞ
�x

� uðx;tÞ�uðx��x;tÞ
�x

�x
:

and, consequently,

uxxðx; tÞ �
uðxþ�x; tÞ � 2uðx; tÞ � uðx��x; tÞ

�x2
: (9)

We note that Equation (9) is equivalent to Equation (5).

Substituting the difference approximations (8)–(9) for the respective

partial derivative terms in the heat equation (and simplifying), we obtain a

partial difference equation that permits us to predict the spatial temperature

Teaching Modeling with Partial Differential Equations 167
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distribution at a ‘‘future’’ time (i.e., u(x, t + Dt)) given the ‘‘current’’ tem-

perature distribution (i.e., u(x, t)). Specifically,

uðx; t þ�tÞ ¼ uðx; tÞ þ ��t

ð�xÞ2

" #
½uðxþ�x; tÞ � 2uðx; tÞ þ uðx��x; tÞ�

(10)

where the equality is, in fact, an approximation whose local error shrinks

with Dt and Dx.

We remark that in Equation (9) the central differencing follows naturally

from the fact that heat flows to (or from) the point x from both the left,

x � Dx, and the right, x + D. In fact, the central difference is a step ‘‘back’’ to

the difference Equation (5) in the alternative derivation of the heat equation.

In contrast, in Equation (8) we choose forward differencing specifically

because we wish to predict the thermal energy distribution of the rod at

future times, t + Dt, based on the current distribution at time t. (For students

who are curious, the implementation of the ill-posed backwards difference

equations provides an interesting area for investigation and further study).

Now, given: (i) a numerical value for the constant a, which depends

upon the nature of the material; (ii) an initial condition u(x, 0) = f(x); (iii) two

boundary conditions, u(0, t) = h1 (t) and u(L, t) = h2(t); and (iv) values for Dx

and Dt, we can ‘‘march’’ forward in time with Equation (10). In this way, we

estimate the diffusion of thermal energy along the length of the rod.

Spreadsheet Implementation

To execute the numerical simulations, we take time in class for the students

to implement Equation (10) with a spreadsheet (see Figures 2 and 3.) We

start with a blank spreadsheet and build with the students input. If the

facilities permit, the students can build their own spreadsheets simulta-

neously. We are careful to lead the students to good stewardship of their

spreadsheet by identifying parameters needed that they could possibly

change, specifically a, Dt, and Dx.

From the spreadsheet, we see concretely how to advance forward in time

from the given initial condition and inward from the boundary conditions at

each end of the rod. We get the students to draw a picture of how Equation (10)

demonstrates the stepping, in time, of the thermal energy flow solution. We

illustrate this in summary in Figure 3.

From here, students immediately plot their solution to see that it con-

firms their physical understanding of thermal energy flow in an insulated rod

with both ends in ice; i.e., u(0, t) = 0 and u(1, t) = 0. We illustrate this in

Figure 4.

168 Myers, Trubatch, and Winkel
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Figure 2. Illustration of how students ‘‘see’’ the building of the spreadsheet, espe-

cially the computation of u(x, t + Dt) from nearby cells, u(x � Dx, t), u(x, t), and

u(x + Dx, t), all of which are at the previous time increment.

Figure 3. Finished spreadsheet for heat equation ut = auxx with initial condition

u(x, 0) = x(1 � x) and boundary conditions u(0, t) = 0 and u(1, t) = 0, where

a = 0.3, Dt = 0.01, and Dx = 0.1.

Teaching Modeling with Partial Differential Equations 169
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One advantage of the numerical simulation over the analytical solution is

that the spreadsheet can be easily modified to investigate inhomogeneous

boundary conditions. Specifically, we can modify the implementation to

simulate a situation in which the temperature at one end varies periodically

in time; e.g., u(L, t) = sin(t), for 0 � t. (In contrast, the analytical solution of

the heat equation with a time-periodic boundary condition involves several

additional non-trivial steps).

In our experience, students can develop the heat equation, formulate the

finite-difference scheme, and build a spreadsheet implementation in two to three

55-minute class periods. We have the students read the text material [2, 5] before

class and come prepared to present one of the two approaches for computing the

time rate of change of thermal energy in the plug outlined in the text.

We usually put two students from each computational approach into a

four-person group. Here, we have each pair, in turn, convince the other pair

of their way of accounting for the time rate of change of thermal energy and

then acknowledge the fact that each pair has computed the same thing; hence,

they have an equation by setting their computed values equal to each other.

We collectively get to the difference equations and have the students build

their spreadsheets, all for the same heat problem and conditions. We obtain a

plot and play with several initial and boundary conditions to see that the

model we have built makes sense.

Numerical Instability

Finally, we conduct a naı̈ve investigation for stability and get the spreadsheet

to blow up! We do this by first surreptitiously calculating the stability limit

Figure 4. Plot of the numerical solution in Figure 3.
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1
2

�x2

� somewhere on the side of our spreadsheet, where students can’t see it.

Then we choose a value for the time step Dt that is greater than this value.

Executing the spreadsheet immediately leads to disaster: it fills with numbers

that oscillate between positive millions and negative millions. A graph of the

temperature shows initially small oscillations that grow without bound. We

wonder aloud with students: what might have gone wrong? We suggest that

maybe we were too greedy in getting to the desired final time in too few steps.

We pick a new time step that happens to be less than our calculated stability

limit and then recalculate and show how everything is now nicely behaved as

we expect. Only then do we draw attenting to our stability limit calculation and

the fact that our first computation violated it and our second did not.

We do not derive or try to explain this limit in any detail; that is not our

purpose in presenting it.

Instead, we explain that our purpose was to show them that finite differ-

ence methods similar to what we just developed cannot be taken for granted;

that there are lots of very reasonable ways to discretize partial differential

equations that will end up in total failure, and so people attempting numerical

solutions should generally find known algorithms with known stability proper-

ties and stay within the prescribed bounds. We also emphasize that this is a

lesson in using almost any computational package; stability, convergence, and

applicability of the algorithm featured in software package A to the physical

features of problem B can be real issues, and therefore the user must remain

vigilant in inspecting package output to see if it is consistent with various

bounds and common-sense checks. It is not necessarily the fault of the package

but is rather a manifestation of the limitation of numerical algorithms and the

complexity of the real world.

As an aside, we note that the conditional stability of our explicit method

can be explained and analyzed by a von Neumann stability analysis, which

makes use of the fact that the spatial Fourier modes of the equation evolve

independently of one another (cf. [6]). In fact, one can construct an implicit

scheme (Crank-Nicolson) that is unconditionally stable (also shown by von

Neumann stability analysis). However, this material is beyond what we have

discussed with our students.

FURTHER EXPLORATIONS WITH A ‘‘BLACK BOX’’

NUMERICAL SOLVER

Solution to the Original Problem

Our students have seen Euler’s method in our core mathematics courses for

ordinary first-order differential equations and they have used Mathematica’s

NDSolve function to solve ordinary differential equations that cannot be

easily solved analytically, either by hand or with Mathematica’s DSolve

Teaching Modeling with Partial Differential Equations 171
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function. Therefore, they have some idea of what a numerical solution really

means. With that background, we coach them on the use of NDSolve to solve

the heat equation. The code inListing1 generatesanumerical solution of the heat

equation. We note that, in Mathematica, the parentheses-asterisk combination

denotes a comment.

The result of the numerical calculation in Listing 1 is assigned to the

variable sol. Mathematica returns the result of the numerical simulation as a

Mathematica Replacement Rule whose object is a Mathematica Interpolating

function. (Note that a Mathematica installation contains complete documen-

tation, including a discussion of these structures). However, fortunately, it is

not necessary to master these aspects of the Mathematica language to gen-

erate a numerical solution and the corresponding plot. The code in Listing 2

generates a three-dimensional plot of the solution found in Listing 1 that is

stored in sol. The plot options have been specified so as to improve the clarity

and appearance of the plot. The resulting plot is in Figure 5.

Listing 1: Numerical solution of the heat equation.

0.8
1

0
0.2

0.4
0.6

0.8
t

0.1

0.2

u x, t

x

0

0.6
0.4

0.2
0

Figure 5. Plot of numerical solution generated with Mathematica code in Listing 2.
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Listing 2: Generate a plot of the solution sol.

Animation

In addition to a three-dimensional plot, one can visualize the solution by

generating an animation of the time evolution of the temperature distribution

in the rod. In a Mathematica notebook, one first generates the frames and

then animates them. The code in Listing 3 generates 41 frames from t = 0 to

t = 2 in increments of 0.05. We illustrate the results in Figure 6 with four

0.2 0.4 0.6 0.8 1
x

0.05

0.1

0.15

0.2

0.25
u (x, t)

0.2 0.4 0.6 0.8 1
x

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1
x

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1
x

0.05

0.1

0.15

0.2

0.25

t = 0.00

t = 0.20
u (x, t)

t = 0.60

u (x, t) t = 0.05

u (x, t)

Figure 6. Four snapshots generated by the code in Listing 3.
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‘‘snapshots’’ of the temperature u(x, t) in the rod over 0 � x � 1 and at times

t = 0.00, 0.05, 0.20, and 0.60. The animation is played in the Mathematica

notebook by double-clicking on any one of the many frames generated for the

animation. Moreover, the animation can be stepped, slowed down, reversed,

and looped. Animations can be saved as animated gif files and work inde-

pendent of Mathematica. We have found that animations are very effective in

helping students (and faculty!) ‘‘see’’ their solutions, the success of their

modeling, and the ramifications of parameter changes.

Listing 3: Code that generates the animation frames of the numerical solution.

Different Boundary Conditions

The numerical solver is quite flexible and allows us to easily consider a

number of scenarios. In particular, we can investigate the affect of changing

the boundary conditions. For example, we ask: ‘‘How would we model

insulating one end of the rod?’’ This takes some time to get the students to

produce. We have told them modeling is not easy and here is an instance.

We give the students hints to help them determine the appropriate math-

ematical boundary condition: (1) If one end is sealed then no thermal energy

crosses that boundary. (2) No thermal energy will flow if the temperature

gradient at the boundary is zero. Consequently, the insulating boundary con-

dition at x = L is ux(L, t) = 0, where the rod is insulated at x = L. They ‘‘get’’

it, but then ask how to implement this in Mathematica’s NDSolve function.

The Mathematica code for an insulating boundary condition at x = 0 is

where L corresponds to x = L. This code can be substituted into the code in

Listing 1 as a replacement boundary condition at x = L.

174 Myers, Trubatch, and Winkel



D
ow

nl
oa

de
d 

B
y:

 [W
in

ke
l, 

B
ria

n]
 A

t: 
20

:4
0 

12
 M

ar
ch

 2
00

8 

For the numerical simulation, we select a slightly different initial con-

dition to avoid a discontinuity at the corner (x, t) = (0, 0). That is, if

u(x, 0) = f(x) = x(1 � x), then ux(1, 0) = f ´(1) „ 0 in contradiction to the

insulating boundary condition. To avoid the discontinuity, we choose

f(x) = x(1 � x)2, in which case f ´(1) = 0. Thus, the corner discontinuity/

inconsistency is not a theoretical problem. The numerical methods used by

Mathematica 5.2, however, do not handle the discontinuity well, instead

generating a solution with spurious oscillations. This is another illustration

of the fact that numerical simulations are nontrivial and their results cannot

be accepted unquestioningly.

A plot of the solution with the insulating boundary condition is given

in Figure 7. Notice, as do the students, that, at the insulated end (x = 1)

the temperature rises as the heat in the center of the rod flows toward

both ends (which are cooler than the middle). Unlike the ‘‘frozen’’ end

(x = 0), in this case the heat accumulates at the insulated end and the

temperature rises. Then, when temperature in the center falls below that

on the insulated end, the heat flows toward the frozen end. The visual

feedback both confirms and helps students further develop their intuition

about the solution.

More Variations

In addition to modifications to the end of the rod, e.g., holding the end(s) in

ice, sealing off the ends, and varying the temperature on end(s) over time, we

did such things as ‘‘detect’’ a leak in the insulation surrounding the rod. In

particular, we modeled the insulation so that a small portion of it along the

rod was exposed to room temperature. Using Newton’s Law of Cooling for

0
0.2

0.4
0.6

0.8
1

0 0.2 0.4 0.6 0.8 1
t

0

0.05

0.1

0.15

x

u (x, t)

Figure 7. Plot of Mathematica numerical solution using for the heat equation gener-

ated by the code in Listing 1 with the boundary condition at x = 1 replaced

by Derivative [0, 1][u][L, t] = = 0, which corresponds to the insulating boundary

condition ux(1, t) = 0.
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that section of the rod we solved the nonhomogeneous heat equation for this

rod and gave the students ‘‘observed’’ data from one temperature probe

placed inside the rod but not in the uninsulated section. From these data we

gave them a number of possibilities for what sections of the rod could have

leaked and asked them to ‘‘sleuth it’’ to determine just which region was

uninsulated. We also opened up the Pandora’s box of inverse problems to

show them how hard problems can really get, by asking them how hard it

might be to determine the nature and place of insulation ‘‘failure’’ if we were

to give them several data sets of heat in the rod over time; i.e., could they

determine the insulation condition of the rod given some time, position, and

temperature data.

Another application we offered students was to determine just how deep to

place a root cellar so that it was coldest in the summer and warmest in the

winter. This idea came from a COMAP Module [1]. The conceptual idea is that

the temperature at one end of a rod of soil—the surface of the earth—varies

seasonally and there is a lag as the heat moves through the soil to where the root

cellar might be. With given soil parameters we asked them to locate the depth

in the soil for the root cellar where that lag is exactly 6 months so that at the

root cellar depth it is coldest in the summer and warmest in the winter.

CONSTRUCTION OF AN ANALYTIC SOLUTION

Here we discuss a method for deriving the standard formula for the analytic

solution without an (explicit) separation of variables strategy. Instead, we

build a solution out of special elementary solutions and work back to the

Fourier series solution of the initial value problem.

Students who have had a first course in ordinary differential equa-

tions (ODE) or have some exposure to ordinary differential equations in

their calculus courses are familiar with exponentials and trigonometric

functions as solutions of linear, constant-coefficient differential equations.

In our experience, such students can be led to conjecture a solution of the

form

uðx; tÞ ¼ e��t sinðxÞ

for the heat equation (4) with the boundary conditions u(0, t) = u(p, t) = 0.

The solution can then be easily verified by substitution back into the

original equation. This may seem cavalier, but students with a basic knowl-

edge of ODEs have mostly seen solutions in terms of exponentials and

trigonometric functions and, therefore, these are a natural first guess.

Moreover, the physical context predisposes students to the decaying expo-

nential in time. The choice of an oscillatory (sine) function for the spatial

dependence then follows naturally from the boundary conditions.
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Changing the initial condition to u(x, 0) = sin(2x), we require the stu-

dents to modify their solution. The conjectured solution is naturally

u(x, t) = e-4t sin(2x), which can, as before, be checked by substitution back

into the heat equation. The modification follows by an invocation of the

chain rule and does not require physical motivation. With these two examples

in mind, changing the initial condition to u(x, 0) = sin(nx), we lead them to

conjecture a family of solutions of the form

uðx; tÞ ¼ e�n2t sinðnxÞ (11)

which, as verified by direct substitution, satisfy both the partial differential

equation and the homogeneous boundary conditions. Having the constructed

solutions (11), which we refer to as elementary solutions, we point out that,

due to the linearity of the partial differential equation, we can construct a

more general solution of the form

uðx; tÞ ¼ b1u1ðx; tÞ þ b2u2ðx; tÞ þ � � � þ bnunðx; tÞ

which has n free parameters and, for any choice of parameters, satisfies the

homogeneous boundary conditions, u(0, t) = u(p, t) = 0. We note that each

particular choice of parameters (i.e., numerical values for {b1, . . ., bn})

generates a solution that satisfies a particular initial condition, namely,

uðx; 0Þ ¼ f ðxÞ ¼ b1 sin xþ b2 sin 2xþ � � � þ bn sin nx: (12)

The question then naturally arises as to the solution of the initial value

problem when the initial data is not of the form (12). For example, the initial

data f(x) = x(p�x), which is similar to that used in numerical simulations, is a

polynomial with no explicit connection to sine. Because, typically, we have

introduced Fourier series in a previous section of the course, it is our

expectation (our wish?) that the students recognize the constants bk in (12)

as the Fourier coefficients of the initial condition, u(x, 0) = f(x) on the

interval [0, p]. Once this identification has been made, we can apply the

usual formulae for a Fourier sine series

bk ¼ 2

Z �

0

f ðxÞ sinðkxÞ dx (13)

to obtain the coefficients. For a smooth function, a plot reminds the students

that a truncated series converges quickly and, thus, we can use it to obtain a

good approximation of the solution for more general initial data.

The analytical solution formula provides more than a means of comput-

ing a particular solution for given data. One can use the general solution to
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obtain information about the behavior of the system. In the case of the heat

equation with homogenous boundary conditions, the general solution is

uðx; tÞ ¼ b1e�12t sinð1xÞ þ b2e�22t sinð2xÞ þ :::þ bne�n2t sinðnxÞ þ � � �

where the coefficients are given by (13). From this formula, one can see

that all solutions decay to zero as t! +1. Moreover, the higher terms decay

more rapidly than the lower terms so the solution becomes smoother over time.

In fact, solutions with a wide range of initial data come to resemble each other

more closely as the higher terms in the sum decay rapidly and the solution

becomes dominated by the few lowest terms. As is our general approach, these

mathematical observations can be quickly confirmed visually with plots and

animations of example solutions. As we have observed, in our experience, such

concrete visual feedback makes a strong impact on the students.

We note that one can take the discussion further and construct general

solutions for different boundary conditions. To do so, one starts with an

elementary solution of the form

uðx; tÞ ¼ e�n2tða cos nxþ b sin nxÞ

and then finds a, b, and n that satisfy the boundary conditions. In fact, the

admissible values of n (and in particular the lowest value) give information

about the rate of loss of thermal energy associated with a given set of

boundary conditions.

THE WAVE EQUATION AND MAKING SOUNDS

Using elementary physical principles and a free-body diagram of the forces

on a plug of mass on a string, we can obtain the wave equation as a model of

its transverse oscillations [5], namely,

uttðx; tÞ ¼ c2uxxðx; tÞ

where u(x, t) is the transverse displacement at a distance x from one end of

the string at time t; c ¼
ffiffiffi
T
�

q
, where T is the tension in the string, and � is the

(linear) density of the string material.

Initial (IC) and boundary conditions (BC) are necessary.

IC : uðx; 0Þ ¼ f ðxÞ and utðx; 0Þ ¼ 0 BC : uð0; tÞ ¼ 0 and uðL; tÞ ¼ 0

where f(x) is the initial displacement of the string. When we teach the wave

equation it is usually after the heat equation and we usually forego the
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student’s developing the physical derivation. Instead, we sketch it in class

and move directly to solutions.

Mathematica numerically solves this partial differential equation with

various initial conditions, usually keeping the ends fixed as with a musical

instrument string that is bowed, pulled and released, or struck. We discuss

various initial conditions, e.g., triangular shape, which is tantamount to pull-

ing the string up and releasing it, and the theoretical initial conditions

referred to as modes, i.e., going from half sine cycle over the length of the

string, uðx; 0Þ ¼ f ðxÞ ¼ sin �x
L


 �
(first mode), to full cycle over the length of

the string, uðx; 0Þ ¼ f ðxÞ ¼ sin 2�x
L


 �
(second mode). We give examples of

solutions for these two modes (other modes are easily replicated) in Figure 8.

Here we tell the students that the first mode frequency of the wave or

oscillation is

f1 ¼
1

2L

ffiffiffiffiffiffi
T

�
:

s
(14)

At this point we have not done the building of the analytic solutions invol-

ving the eigenfunctions and necessary Fourier series preliminaries; rather, we

just tell them about the modes and have Mathematica show them the wave

motion in three dimensions and in two-dimensional animations.

We now attempt to tune the string to get a first mode frequency for the

string. We consider the following string with � = 8 g/cm and L = 10 cm. T,

in dynes, is unknown and we wish to determine T so that f1 is 440-Hz

frequency for our first mode of the string’s vibration. 440 Hz is the frequency

for the A above middle C on the piano and we often digress to talk about the

tuning of piano strings by changing the tension with a tuning wrench.

We use Mathematica’s Solve routine to solve for and grab Tn, the tension

we need to apply to obtain a vibrating frequency of 440 Hz.

Figure 8. First two modes for vibrating string: first mode (a) where

uðx; 0Þ ¼ f ðxÞ ¼ sin �x
L


 �
and second mode (b) where uðx; 0Þ ¼ f ðxÞ ¼ sin 2�x

L


 �
.
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From this we obtain Tn = 619,520,000 dynes and thus

c ¼
ffiffiffi
T
�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
619520000

8

q
¼ 8800 m/s for our wave equation model. Now we

offer up the initial conditions, first the initial position of the string – the first

mode:

and then an initial velocity at t = 0. In the NDSolve command we set the

initial velocity to zero:

Finally, we use NDSolve to generate a numerical solution of the wave

equation and grab the solution, h1(x, t). Notice the command MaxSteps-

>100000, which allows a tenfold increase in the maximum number of steps

Mathematica uses to get us to the value of t = 1.

If we ‘‘watch’’ the spot on the middle of the string (x = L/2) as it has

greatest amplitude we can study the following function:

Our theory says that p(t) oscillates with a frequency of 440 Hz. This is the

frequency of the A above middle C on the piano. We can plot (Figure 9) the

oscillating function p(t) and the standard 440 Hz signal sin(440 2p t) and we

obtain the following. We see that they are slightly out of phase but clearly of

the same frequency.

With Mathematica we can play the audible two frequency sounds and

hear if our solution has 440-Hz frequency. (Simply replace the function Plot

with the function Play). When we play the two signals they sound the same.

Indeed, when we add the two signals, if they were a tad off we would get

beats, and no beats appear in our case. Thus, our numerical solution from

Mathematica gets it right and we have determined the tension (or tuning)

necessary to tune a vibrating string to exactly a frequency of 440 Hz. We

have used this sound feature of Mathematica on a number of occasions

in order to illustrate such notions as resonance and beats in the study of
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second-order, nonhomogeneous, linear, constant coefficient ordinary differ-

ential equations and Fourier analysis of sounds.

CONCLUSION

We have offered ways to incorporate mathematical modeling in the study of

partial differential equations. The solution of the resulting partial differential

equation is accomplished in three different ways (i) discretization using a

spreadsheet, (ii) numerical solver of Mathematica, and (iii) equation building

from basic components. In all cases there is attention to the phenomenon

being modeled and students can address ‘‘what if?’’ issues with the solutions.

Specifically, we have presented an approach for studying two partial

differential equations in one space and one time dimension, (i) the heat

equation and (ii) the wave equation. In both cases we start with a physical

situation and model by using elementary physical principles. In the case of

the heat equation we build a forward difference model to numerically render

a solution in a spreadsheet. In both cases we turn to Mathematica’s NDSolve

command to obtain a numerical solution and study our solutions through

graphical representation, animation, and, in the case of the wave equation,

sound. Moreover, we offer an analytic approach different from the separation

of variable/boundary value approach often taken. We have found that stu-

dents enjoy seeing a mathematical model that demonstrates physical notions.

The graphical and audio feedback makes both numerical and analytical

solution more concrete for the students and gives them a basis to test and

develop their intuition.

Figure 9. Plot of (1-thin) solution to the wave equation utt(x, t) = c2uxx(x, t) for a

vibrating string with initial conditions (first mode); position –uðx; 0Þ ¼ sin �x
L


 �
and

velocity – ut(x, 0) = 0; and boundary conditions (fixed end points) u (0, t) = 0 and

u (L, t) = 0 and (2 – thick) the pure 440 Hz signal, g(t) = sin(440 2pt), shown out of

phase to emphasize the common frequency.
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