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Applications of Network Flows  
Jeffrey A. Appleget, Steven B. Horton 
 
 
Introduction 
 
A great variety of military problems can be modeled with network flows.  This 
chapter will discuss two of the most basic network flow problems: maximum flow 
and shortest path.  Before we can get to these military applications, however, it is 
important to understand some of the fundamental concepts of linear 
programming and how they relate to integer programming.  If you are generally 
familiar with these concepts, you can skip the next section. 
 

Linear and Integer Programming 
 
A linear program is an optimization problem of the form 
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The ix  terms are the decision variables and the ija , ib , and jc  terms are data 
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0≥jx  are known as nonnegativity constraints.  Note that in the standard form 

above there are n nonnegativity constraints and m of the other type. 
 
Example 
 
Giapetto’s Woodcarving, Inc. manufactures and sells toy soldiers and toy trains.  
A soldier sells for $27 and a train sells for $21.  We assume all soldiers and 
trains manufactured can be sold.  Soldiers require 12 hours of labor and 2 units 
of wood.  Trains require 3 hours of labor and 7 units of wood.  For this week, 
Giapetto has 81 hours of labor and 111 units of wood available.  How many 
soldiers and trains should he make to maximize revenue? 
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The first step in solving this type (and most other types!) of problem is to define 
your variables.  If we let 1x  be the number of soldiers to make and 2x  be the 
number of trains to make, we can think of Giapetto’s problem as the following 
linear program: 
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The first line is the objective function.  In this case it represents the money that 
Giapetto gets for each possible decision he might make.  The first two constraints 
represent restrictions imposed by the limited supply of labor and wood, 
respectively, at Giapetto’s disposal.  The other two constraints are simply logical 
restrictions against building a negative number of soldiers or trains. 
 
Although it will not be covered here, there are a number of ways to find the 
solution to linear programs.  See [2] or [3] if you’d like to learn more about these 
methods.  The solution to the example above is 1x = 3 and 2x = 15.  Can you 
think of a way to find this solution?  Look at the picture in figure 1 below of the 
region where each of the four inequalities is satisfied.  This region of allowable 
solutions is called the feasible region.  Does this help you see a way to solve this 
type of problem?  How does the objective function get considered in your solution 
method? 
 

 
 

Figure 1: Feasible Region 
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Notice that the optimal solution of 1x = 3 and 2x = 15 “happens” to occur where 
two of the constraints intersect.  Do you think this is a coincidence? 
 
Something you might have noticed about the example above is the fact that we 
were lucky enough to have an integral optimal solution.  An integral solution is 
one where each decision variable is an integer (whole number).  This would have 
made it easy to tell Giapetto what to do: make 3 soldiers and 15 trains.  Suppose 
we make a very small change in the problem and give Giapetto an extra hour of 
labor for a total of 82.  Now the linear program is 
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This small change has the effect of moving one of the constraints “out” slightly.  
You can again find the linear program solution graphically or with some other 

method, but it is unfortunately no longer integral: 0897.3
78
241

1 ≅=x  and 

9744.14
39

584
2 ≅=x .  While we can’t tell Giapetto to make 3.0897 soldiers and 

14.9744 trains, we can at least stick with our old solution of 3 soldiers and 15 
trains and “waste” the extra hour of labor.  There is no longer any assurance that 
(3,15) is the best solution, but it is at least a feasible solution, since it obviously 
still satisfies all of the constraints.  
 
On the other hand, consider what happens if we lose an hour of labor as 
opposed to gaining one.  Now our linear program is  
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and the optimal linear program solution is 9103.2
78

227
1 ≅=x  and 

0256.15
39

586
2 ≅=x .  Now we have bigger problems.  Not only is our new 

solution not integral, but our old friend and previous solution (3,15) is now not 
feasible since it violates the first constraint.  So now even finding a feasible 
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solution seems to be a challenge.  In fact, although linear programs are efficiently 
solvable, no efficient procedure is known to solve all integer programming 
problems.  An integer program is simply a linear program in which the decision 
variables can only be integers.  A binary integer program is a linear program 
where the decision variables can only take on the values 0 or 1. 
 
There are several points here.  Linear programs are easy to solve, but when our 
problem requires an integral solution in the real world, the linear programming 
model generally fails to give us what we need.  However, when the linear 
programming solution happens to be integral, we know we have the right answer: 
we can go tell Giapetto what to do directly from this solution without any 
interpretation or other difficulties.  Fortunately, there are several general classes 
of problems where under certain conditions the linear programming solution 
always works out to be integral.  Among these are the two types of problems we 
will study next: maximum flows and shortest paths. 
 
 
Modeling Military Maximum Flow Problems 
 
You are the movement officer for an infantry division.  The division must move 
from the port of debarkation to an assembly area in the corps rear area.  Figure 2 
is a model of the road network in your area.  Your task is to get as many 
companies as possible to the assembly area in the first hour.   
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Figure 2: Maximum Flow Example 

 
The starting node s represents the port of debarkation and the termination node t 
represents the assembly area.  Other nodes represent road junctions.  Arcs are 
identified by the nodes which they connect.  Each arc represents a road, and 
each road has a capacity, ijc , in companies per hour, as shown.  For example, 

the arc (3,6) has a capacity of 7 companies per hour, while for arc (6,t), ijc = 8.  

We assume that the arcs are one-way, or directed arcs.  We call the overall 
network G=(N,A) where N is the set of all nodes {s,2,3,…,n-1,t} and A is the set 
of all existing arcs {(s,2),(s,3),(s,6),(3,6),…,(6,t),(7,t),(8,t)}. 
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We can model this maximum flow problem using linear programming.  Let ijx  

represent the number of companies that travel on road (i,j).  To simplify the 
model, we add the arc (t,s) and set ∞=tsc . 
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As we discussed in section II, this is a type of problem where solving the linear 
program will always give as an integral solution as long as each ijc  is an integer.  

 
 
Modeling Military Shortest Path Problems 
 
The shortest path problem is another simple network flow problem. As the name 
implies, the shortest path problem finds the shortest path between two points. 
For simplicity, we will consider shortest path problems that find the shortest path 
from some starting node s to a termination node t.  Military applications include 
finding the shortest path for deploying a unit from some rear assembly area to a 
tactical assembly area and finding the most reliable route between two nodes. 
 
Example: Deploying a unit 
 
As the S-3 of the 1st Forward Support Battalion, you are tasked to find the 
shortest route from Assembly Area Alpha to Tactical Assembly Area Support.  
You are given a sketch of the road network in figure 3 below.  
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Figure 3: Shortest Path Example 
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First, all the nodes in the network represent road junctions where multiple roads 
intersect. We can assign numbers 2 through n-1 to number the nodes between s 
and t, giving us a total of n nodes. If a suitable road exists between two nodes, 
then we connect the nodes with an arc. Arcs are again identified by the nodes 
which they connect.  Each arc will have a length associated with it, which we will 
call lij. We can formulate this problem as a linear programming problem where xij 
represents arc (i,j): 
 

.),(allfor0

}{}{allfor0

for1

for1

min

}),(:{}),(:{

}),(:{}),(:{

}),(:{}),(:{

),(

Ajix

tsNixx

tixx

sixxst

xl

ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

Aji
ijij

∈≥

−−∈=−

=−=−

==−

∑∑

∑∑

∑∑

∑

∈∈

∈∈

∈∈

∈

 

 
As was true for maximum flow problems, this is a type of problem where solving 
the linear program will always give as an integral solution.  In this case, we can 
be assured that the values for xij  will be either 0 or 1:  0 if the arc (i,j) is not in the 
shortest path, and 1 if arc (i,j) is in the shortest path.  
 
Example: Finding the most reliable route 
 
Now that the FSB has reached TAA Support, combat has begun. As the brigade 
that your battalion supports moves forward, you must move forward as well to 
effect timely support. Again, the road network leaves you with choices. This time 
you are concerned with finding the most reliable route.  You will move in 6 hours. 
Because combat creates rapidly changing situations, you will not know which 
routes are open or closed, but rather you will be provided with the probability that 
each section of the road network (represented by an arc) is operational when you 
are to traverse it. Let pij be the probability that arc (i,j) is operational. We are now 
interested in solving the problem:  
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In case you are not familiar with it, the ∏ symbol is just like the ∑ symbol, 

except that you multiply all the terms together instead of adding them.  This 
model looks very similar to the shortest path linear programming problem, except 
for the objective function. However, we can easily transform this into a shortest 
path problem by taking a logarithm of the product of the probabilities, since for 
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Now, since )( xfe  achieves its maximum exactly where )(xf  does, we can 
formulate this as a linear programming problem:  
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But this is simply a shortest path problem. Again, we are assured that the 
decision variables will all be either 0 or 1, even though the value of the objective 
function will most likely not be an integer. 
 
So far, we have considered problems that are “nice” in the sense that solutions 
are always easy to find using linear programming techniques.  With maximum 
flow and shortest path, we never have to deal with the possibility that the optimal 
solution will not be integral.  Unfortunately, things don’t always work out so 
easily.  Therefore, we next present a class of problems where linear 
programming techniques do not yield integers in general.  This means that we 
have to formulate the problem as an integer program, and that we cannot solve 
this type of problem “efficiently” (for a more thorough explanation of what we 
mean here, read chapter 1 of [4]). 
 
The Knapsack (Rucksack) Problem 
 
You are a soldier in a 2-1/2 ton truck bringing critical spare parts to the front 
lines. However, your truck hits a landmine, and is rendered inoperative. Grabbing 
your rucksack, you empty it of its contents and climb in the rear of the truck. You 
want to load your rucksack with as many spare parts as possible, and continue 
the mission. Because there are far too many spare parts, you must choose the 
parts that are the most important. Your rucksack will hold 6 cubic feet of spare 
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parts. You have a message from the brigade commander that lists the four most 
critical spare parts, their relative worth, or utility, to the accomplishment of the 
mission, and their volume in cubic feet. They are: 
 
 

Spare 
Part # 

Weapon system utility volume 

1 M109A6 Paladin fuel pump 35 1 
2 M1A2 Abrams optical sight 20 3 
3 M2 Bradley Chain Gun bolt 30 2 
4 OH-58D laser designator 55 4 

 
 
We can model this situation in order to maximize utility with the following binary 
integer programming problem: 
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Here iu  is the utility of spare part i, iv  is the volume of spare part i, V is the 
capacity of your rucksack, and jx  is the decision variable that equals 1 if you 

include spare part i in your rucksack and 0 if you don’t. 
 
Although this seems very similar to the models given on the previous pages, the 
restriction that each jx  must be either 0 or 1 makes this type of problem very 

hard to solve.  You can probably solve this example with ease (just try all the 
possibilities!), but (larger) problems of this type are not solvable by any known 
efficient solution procedure.   
 
The fact that finding these solutions can be difficult doesn’t make these types of 
problems any less important, however.  The Army, as well as many other 
organizations, needs to solve this kind of problem all the time.  As a result, a 
great deal of research is conducted every year to attack this class of problems.  
This area of mathematics is called combinatorial optimization.  You can learn 
more about it by reading [5]. 
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Exercises 
 
1.  Write down explicitly the linear programs in the maximum flow and shortest 
path examples. 
 
2.  Write down the integer program given in the rucksack example. 
 
3.  What is the role of tsx  in the maximum flow example?  Why is the associated 
capacity set at infinity? 
 
4.  Write an essay that compares and contrasts linear, integer, and binary integer 
programming. 
 
5.  Name three military problems that are maximum flow problems.  What are the 
decision variables?  What are the arc capacities? 
 
6.  Name three military problems that are shortest path problems.  What are the 
decision variables?  What are the arc lengths? 
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