
 141

Applications of Network Flows
Jeffrey A. Appleget, Steven B. Horton

Introduction

A great variety of military problems can be modeled with network flows. This
chapter will discuss two of the most basic network flow problems: maximum flow
and shortest path. Before we can get to these military applications, however, it is
important to understand some of the fundamental concepts of linear
programming and how they relate to integer programming. If you are generally
familiar with these concepts, you can skip the next section.

Linear and Integer Programming

A linear program is an optimization problem of the form

()

().,...,2,10

,...,2,1 :to subject

 maximize

1

1

njx

mibxa

xc

j

n

j
ijij

n

j
jj

=≥

=≤∑

∑

=

=

The ix terms are the decision variables and the ija , ib , and jc terms are data

that are typically part of the problem. ∑
=

n

j
jj xc

1

 is called the objective function and

both 0and
1

≥≤∑
=

j

n

j
ijij xbxa are called constraints. Constraints of the form

0≥jx are known as nonnegativity constraints. Note that in the standard form

above there are n nonnegativity constraints and m of the other type.

Example

Giapetto’s Woodcarving, Inc. manufactures and sells toy soldiers and toy trains.
A soldier sells for $27 and a train sells for $21. We assume all soldiers and
trains manufactured can be sold. Soldiers require 12 hours of labor and 2 units
of wood. Trains require 3 hours of labor and 7 units of wood. For this week,
Giapetto has 81 hours of labor and 111 units of wood available. How many
soldiers and trains should he make to maximize revenue?

 142

The first step in solving this type (and most other types!) of problem is to define
your variables. If we let 1x be the number of soldiers to make and 2x be the
number of trains to make, we can think of Giapetto’s problem as the following
linear program:

0

0

11172x

81312x:to subject

2127x maximize

2

1

21

21

21

≥
≥

≤+
≤+

+

x

x

x

x

x

The first line is the objective function. In this case it represents the money that
Giapetto gets for each possible decision he might make. The first two constraints
represent restrictions imposed by the limited supply of labor and wood,
respectively, at Giapetto’s disposal. The other two constraints are simply logical
restrictions against building a negative number of soldiers or trains.

Although it will not be covered here, there are a number of ways to find the
solution to linear programs. See [2] or [3] if you’d like to learn more about these
methods. The solution to the example above is 1x = 3 and 2x = 15. Can you
think of a way to find this solution? Look at the picture in figure 1 below of the
region where each of the four inequalities is satisfied. This region of allowable
solutions is called the feasible region. Does this help you see a way to solve this
type of problem? How does the objective function get considered in your solution
method?

Figure 1: Feasible Region

 143

Notice that the optimal solution of 1x = 3 and 2x = 15 “happens” to occur where
two of the constraints intersect. Do you think this is a coincidence?

Something you might have noticed about the example above is the fact that we
were lucky enough to have an integral optimal solution. An integral solution is
one where each decision variable is an integer (whole number). This would have
made it easy to tell Giapetto what to do: make 3 soldiers and 15 trains. Suppose
we make a very small change in the problem and give Giapetto an extra hour of
labor for a total of 82. Now the linear program is

0

0

11172x

82312x:to subject

2127x maximize

2

1

21

21

21

≥

≥
≤+

≤+
+

x

x

x

x

x

This small change has the effect of moving one of the constraints “out” slightly.
You can again find the linear program solution graphically or with some other

method, but it is unfortunately no longer integral: 0897.3
78
241

1 ≅=x and

9744.14
39

584
2 ≅=x . While we can’t tell Giapetto to make 3.0897 soldiers and

14.9744 trains, we can at least stick with our old solution of 3 soldiers and 15
trains and “waste” the extra hour of labor. There is no longer any assurance that
(3,15) is the best solution, but it is at least a feasible solution, since it obviously
still satisfies all of the constraints.

On the other hand, consider what happens if we lose an hour of labor as
opposed to gaining one. Now our linear program is

0

0

11172x

80312x:to subject

2127x maximize

2

1

21

21

21

≥
≥

≤+
≤+

+

x

x

x

x

x

and the optimal linear program solution is 9103.2
78

227
1 ≅=x and

0256.15
39

586
2 ≅=x . Now we have bigger problems. Not only is our new

solution not integral, but our old friend and previous solution (3,15) is now not
feasible since it violates the first constraint. So now even finding a feasible

 144

solution seems to be a challenge. In fact, although linear programs are efficiently
solvable, no efficient procedure is known to solve all integer programming
problems. An integer program is simply a linear program in which the decision
variables can only be integers. A binary integer program is a linear program
where the decision variables can only take on the values 0 or 1.

There are several points here. Linear programs are easy to solve, but when our
problem requires an integral solution in the real world, the linear programming
model generally fails to give us what we need. However, when the linear
programming solution happens to be integral, we know we have the right answer:
we can go tell Giapetto what to do directly from this solution without any
interpretation or other difficulties. Fortunately, there are several general classes
of problems where under certain conditions the linear programming solution
always works out to be integral. Among these are the two types of problems we
will study next: maximum flows and shortest paths.

Modeling Military Maximum Flow Problems

You are the movement officer for an infantry division. The division must move
from the port of debarkation to an assembly area in the corps rear area. Figure 2
is a model of the road network in your area. Your task is to get as many
companies as possible to the assembly area in the first hour.

s t

2

3

4

5

6

7

8

5

7

7

6

3 4

8

4
52

6

5

2

2

Figure 2: Maximum Flow Example

The starting node s represents the port of debarkation and the termination node t
represents the assembly area. Other nodes represent road junctions. Arcs are
identified by the nodes which they connect. Each arc represents a road, and
each road has a capacity, ijc , in companies per hour, as shown. For example,

the arc (3,6) has a capacity of 7 companies per hour, while for arc (6,t), ijc = 8.

We assume that the arcs are one-way, or directed arcs. We call the overall
network G=(N,A) where N is the set of all nodes {s,2,3,…,n-1,t} and A is the set
of all existing arcs {(s,2),(s,3),(s,6),(3,6),…,(6,t),(7,t),(8,t)}.

 145

We can model this maximum flow problem using linear programming. Let ijx

represent the number of companies that travel on road (i,j). To simplify the
model, we add the arc (t,s) and set ∞=tsc .

.),(allfor0

),(all for

for0

max

}),(:{}),(:{

Ajix

Ajicx

Nixxst

x

ij

ijij

Aijj
ji

Ajij
ij

ts

∈≥

∈≤

∈=− ∑∑
∈∈

As we discussed in section II, this is a type of problem where solving the linear
program will always give as an integral solution as long as each ijc is an integer.

Modeling Military Shortest Path Problems

The shortest path problem is another simple network flow problem. As the name
implies, the shortest path problem finds the shortest path between two points.
For simplicity, we will consider shortest path problems that find the shortest path
from some starting node s to a termination node t. Military applications include
finding the shortest path for deploying a unit from some rear assembly area to a
tactical assembly area and finding the most reliable route between two nodes.

Example: Deploying a unit

As the S-3 of the 1st Forward Support Battalion, you are tasked to find the
shortest route from Assembly Area Alpha to Tactical Assembly Area Support.
You are given a sketch of the road network in figure 3 below.

s t

2

3

4

5

6

7

8

5

4

7

6

3 4

8

5
42

9

5

4

7

Figure 3: Shortest Path Example

 146

First, all the nodes in the network represent road junctions where multiple roads
intersect. We can assign numbers 2 through n-1 to number the nodes between s
and t, giving us a total of n nodes. If a suitable road exists between two nodes,
then we connect the nodes with an arc. Arcs are again identified by the nodes
which they connect. Each arc will have a length associated with it, which we will
call lij. We can formulate this problem as a linear programming problem where xij
represents arc (i,j):

.),(allfor0

}{}{allfor0

for1

for1

min

}),(:{}),(:{

}),(:{}),(:{

}),(:{}),(:{

),(

Ajix

tsNixx

tixx

sixxst

xl

ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

Aji
ijij

∈≥

−−∈=−

=−=−

==−

∑∑

∑∑

∑∑

∑

∈∈

∈∈

∈∈

∈

As was true for maximum flow problems, this is a type of problem where solving
the linear program will always give as an integral solution. In this case, we can
be assured that the values for xij will be either 0 or 1: 0 if the arc (i,j) is not in the
shortest path, and 1 if arc (i,j) is in the shortest path.

Example: Finding the most reliable route

Now that the FSB has reached TAA Support, combat has begun. As the brigade
that your battalion supports moves forward, you must move forward as well to
effect timely support. Again, the road network leaves you with choices. This time
you are concerned with finding the most reliable route. You will move in 6 hours.
Because combat creates rapidly changing situations, you will not know which
routes are open or closed, but rather you will be provided with the probability that
each section of the road network (represented by an arc) is operational when you
are to traverse it. Let pij be the probability that arc (i,j) is operational. We are now
interested in solving the problem:

.),(allfor0

}{}{allfor0

for1

for1

max

}),(:{}),(:{

}),(:{}),(:{

}),(:{}),(:{

1:),(

Ajix

tsNixx

tixx

sixxst

p

ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

xji
ij

ij

∈≥

−−∈=−

=−=−

==−

∑∑

∑∑

∑∑

∏

∈∈

∈∈

∈∈

=

 147

In case you are not familiar with it, the ∏ symbol is just like the ∑ symbol,

except that you multiply all the terms together instead of adding them. This
model looks very similar to the shortest path linear programming problem, except
for the objective function. However, we can easily transform this into a shortest
path problem by taking a logarithm of the product of the probabilities, since for

}1,0{∈ijx

()∏ ∑
= ∈

=

1:),(),(

lnexp
ijxji Aji

ijijij xpp .

Now, since)(xfe achieves its maximum exactly where)(xf does, we can
formulate this as a linear programming problem:

.),(allfor0

}{}{allfor0

for1

for1

)ln(max

}),(:{}),(:{

}),(:{}),(:{

}),(:{}),(:{

),(

Ajix

tsNixx

tixx

sixxst

xp

ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

Aijj
ji

Ajij
ij

Aji
ijij

∈≥

−−∈=−

=−=−

==−

∑∑

∑∑

∑∑

∑

∈∈

∈∈

∈∈

∈

But this is simply a shortest path problem. Again, we are assured that the
decision variables will all be either 0 or 1, even though the value of the objective
function will most likely not be an integer.

So far, we have considered problems that are “nice” in the sense that solutions
are always easy to find using linear programming techniques. With maximum
flow and shortest path, we never have to deal with the possibility that the optimal
solution will not be integral. Unfortunately, things don’t always work out so
easily. Therefore, we next present a class of problems where linear
programming techniques do not yield integers in general. This means that we
have to formulate the problem as an integer program, and that we cannot solve
this type of problem “efficiently” (for a more thorough explanation of what we
mean here, read chapter 1 of [4]).

The Knapsack (Rucksack) Problem

You are a soldier in a 2-1/2 ton truck bringing critical spare parts to the front
lines. However, your truck hits a landmine, and is rendered inoperative. Grabbing
your rucksack, you empty it of its contents and climb in the rear of the truck. You
want to load your rucksack with as many spare parts as possible, and continue
the mission. Because there are far too many spare parts, you must choose the
parts that are the most important. Your rucksack will hold 6 cubic feet of spare

 148

parts. You have a message from the brigade commander that lists the four most
critical spare parts, their relative worth, or utility, to the accomplishment of the
mission, and their volume in cubic feet. They are:

Spare
Part #

Weapon system utility volume

1 M109A6 Paladin fuel pump 35 1
2 M1A2 Abrams optical sight 20 3
3 M2 Bradley Chain Gun bolt 30 2
4 OH-58D laser designator 55 4

We can model this situation in order to maximize utility with the following binary
integer programming problem:

jx

Vxvst

xu

j

j
jj

j
jj

∀∈

≤∑

∑

=

=

}1,0{

max

4

1

4

1

Here iu is the utility of spare part i, iv is the volume of spare part i, V is the
capacity of your rucksack, and jx is the decision variable that equals 1 if you

include spare part i in your rucksack and 0 if you don’t.

Although this seems very similar to the models given on the previous pages, the
restriction that each jx must be either 0 or 1 makes this type of problem very

hard to solve. You can probably solve this example with ease (just try all the
possibilities!), but (larger) problems of this type are not solvable by any known
efficient solution procedure.

The fact that finding these solutions can be difficult doesn’t make these types of
problems any less important, however. The Army, as well as many other
organizations, needs to solve this kind of problem all the time. As a result, a
great deal of research is conducted every year to attack this class of problems.
This area of mathematics is called combinatorial optimization. You can learn
more about it by reading [5].

 149

Exercises

1. Write down explicitly the linear programs in the maximum flow and shortest
path examples.

2. Write down the integer program given in the rucksack example.

3. What is the role of tsx in the maximum flow example? Why is the associated
capacity set at infinity?

4. Write an essay that compares and contrasts linear, integer, and binary integer
programming.

5. Name three military problems that are maximum flow problems. What are the
decision variables? What are the arc capacities?

6. Name three military problems that are shortest path problems. What are the
decision variables? What are the arc lengths?

References

[1] Ahuja, Magnati, and Orlin, Network Flows, Prentice Hall, Englewood Cliffs,
NJ (1993).

[2] Bazarra, Jarvis, and Sherali, Linear Programming and Network Flows (2d
ed.), John Wiley & Sons, New York (1990).

[3] Chvátal, Linear Programming, W. H. Freeman, New York (1983).

[4] Garey and Johnson, Computers and Intractability, W. H. Freeman, New York
(1979).

[5] Nemhauser and Wolsey, Combinatorial Optimization, Wiley, New York
(1988).

