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ABSTRACT: The card game SET has attracted the attention of math and
game enthusiasts alike. In this article, I present a first semester Ab-
stract Algebra project that guides the students through an algebraic
formulation of the game. There are many interesting mathematical
questions that one can ask about the game, and I illustrate how the
project can be used to get students working on such questions. In this
way, the project can also serve as an opportunity for undergraduate
research.
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INTRODUCTION

The card game SET is known to many as an addictive pastime requiring
speed in pattern-recognition. The game was invented in 1974 by popula-
tion geneticist Marsha Jean Falco, who used symbols on cards to repre-
sent genetic data of German Shepards in an attempt to better understand
epilepsy in the animals. Falco’s search for genetic patterns ultimately led
to an award-winning game. In the early 90’s the game received honors from
MENSA (one of the top five games, 1991), Omni Magazine (one of the best
games of the year, 1991), and Games Magazine (one of the top 100 games
for 1992, 1993, 1994, and 1995). Since that time, SET has continued to
raise interest, and most recently, this interest has come from within the
mathematics community. In the summer of 2003 Ivars Peterson wrote an
article [4] for the MAA Online summarizing some of the mathematics in-
volved in the game. He was inspired by a nice article that appeared in the
Mathematical Intelligencer [1].
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As a long-time SET enthusiast myself, I too became interested in the
mathematical structure of the game, and in the Spring of 2003 (before the
two articles cited above actually appeared) I designed a project for my Ab-
stract Algebra class that guided the students through an algebraic formula-
tion of the game. My hope was that the project would spark the students’
interest in Abstract Algebra while solidifying their understanding of some
of the basic concepts I had already covered in the course: binary opera-
tions, direct products, permutations, and others. I also assigned an optional
“Challenge Problem” (which I myself had not solved) with the additional
thought that the project might provide an opportunity for undergraduate
research.

As I discovered, many of the students were already quite familiar with
SET, and this familiarity helped to ignite their interest in the project. How-
ever, there were several students who had never played the game, so I in-
troduced the project by explaining the basic rules and object of the game.
For the reader unfamiliar with SET, a description is given below.

The Object of the Game

The object of the game is to identify a “Set” among an array of 12 cards
laid on the table. Each card has four characteristics: symbol, color, number,
and filling, and each of these four characteristics can take on one of three
possible values:

1. Symbol: Each card contains either ovals, squiggles, or diamonds.

2. Color: The color of the symbols are either red, green, or purple.

3. Number: There are either 1,2, or 3 symbols on each card.

4. Filling: The symbols on each card are either filled in (solid), unfilled,
or striped.

A collection of three cards is said to be a “Set” if, for each of the four
characteristics, all three cards either share the characteristic or each is dif-
ferent. For example, the three cards shown in Figure 1 below form a Set
because the symbols, number, and shading are all different on each of the
cards, and all three cards share the same red color (although the black and
white image does not allow the reader to see this.)

On the other hand, the three cards shown in Figure 2 do not form
a Set because only two of the three cards share the same (striped) filling.
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Figure 1. Assuming that the symbols on all three cards
are red, the cards above form a “Set”. All of the char-
acteristics except color differ between the cards.

Figure 2. Three cards that fail to form a “Set” because
only two of the three cards share the same striped filling.

THE MATHEMATICAL FRAMEWORK

The Labeling Scheme. Since there are 4 characteristics, each of which
has 3 possible values, we can associate each card in the SET deck with an
element in the set D = Z3 × Z3 × Z3 × Z3. We simply assign a 1, 2, or 0
with each of the three possible values for a given characteristic. There are
certainly many different ways to do this, so we will pick the one described
in the table below and stick with it.

Symbol Label Color Label No. Label Filling Label
oval 1 red 1 one 1 solid 1
squiggle 2 green 2 two 2 unfilled 2
diamond 0 purple 0 three 0 striped 0

Finally, we will agree that the four summands of Z3 × Z3 × Z3 × Z3

will serve as a labeling system for the four characteristics: symbol, color,
number, and filling in that order. So the first summand describes the char-
acteristic “symbol”, meaning that a card of squiggles will be identified with
a 4-tuple having a 2 in its first entry. (See Figure 3 below for examples
of the labeling scheme.) Note that every possible combination of the four

291



PRIMUS December 2005 Volume XV Number 4

characteristics does, in fact, appear in the SET deck. Hence, there are a
total of 81 cards in the deck – exactly the same number as the order of
Z3 × Z3 × Z3 × Z3.

Figure 3. Four cards and their corresponding elements
in Z3 × Z3 × Z3 × Z3. The first card is red, the second
and fourth purple, and the third card is green.

The Multiplication on D

Next we will define an operation on D = Z3 ×Z3 ×Z3 ×Z3. The operation
will be chosen to reflect how one obtains a “Set” from two given cards. If
x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) are two elements of D, then
define xy as follows:

xy = (2(x1 + y1) mod 3, 2(x2 + y2) mod 3, 2(x3 + y3) mod 3, 2(x4 + y4) mod 3)

Note that 22 = 1 mod 3, that is 2 is its own multiplicative inverse in Z3,
and so we could just as well define the product xy to be:

xy =

(
(x1 + y1)

2
mod 3,

(x2 + y2)

2
mod 3,

(x3 + y3)

2
mod 3,

(x4 + y4)

2
mod 3

)

In this way, we can think of xy as the average of x and y in D.

THE PROJECT

The project in my abstract algebra class consisted of the following ten ex-
ercises. After a brief introduction to the game, I gave each of the thirteen
students in my class a SET deck in the hope that this would excite them and
encourage them to take a hands-on approach to problem-solving. I gave the
students two weeks to complete the first nine exercises (while other daily
assignments continued), and I offered extra credit on the tenth problem up
until the last day of class. One student took me up on my offer!

Exercise 1. Suppose that x = (1, 1, 1, 1), y = (0, 0, 0, 0), z = (1, 2, 2, 0),
and w = (2, 2, 1, 1). Compute each of the products xy, xz, xw, and zw
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(symbolically), and then sketch in the appropriate symbols to see how this
multiplication translates into cards. You will need green, red, and purple
pens to complete this exercise! Describe what you discover.
Comments: As most students recognized right away, the product xy does
indeed correspond to the card that completes the Set containing the two
cards represented by x and y. To see that the operation is well-defined,
simply note that xiyi = (xi+yi)

2 mod 3 is a well-defined operation in Z3.

Exercise 2. Once you understand what it means to multiply two cards
together, you might wonder if D is a group under this multiplication. Let’s
explore this issue now. Answer each of the following questions, providing
proofs of each of your claims.

a) Is the multiplication on D associative?
b) Is the multiplication commutative?
c) Does D contain an identity element?
d) Do inverses exist in D?

Comments: Straightforward computations show that the operation is com-
mutative but not associative, and that xz = x holds true only when z = x.
Hence D does not have an identity element, and it does not make sense to
speak about inverses.

Exercise 3.

a) In light of what you discovered in Exercise 1, explain why you would
expect the following two properties to hold true. (Think about what
these properties say in terms of the cards.)

Property 1 : x(xy) = y

Property 2 : (xy)y = x

b) Now prove that these two properties do indeed hold true.

Comments: These properties reflect the fact that any two cards are in
exactly one set. Since xy completes the Set containing x and y, Property
1 says that y must complete the Set containing x and xy, and Property 2
says that x must complete the Set containing xy and y. That is, y = x(xy)
and x = (xy)y.

Exercise 4. Does cancelation hold in D? That is, if x, y, z ∈ D are such
that xy = xz, then must y = z? Provide a proof to support your claim.
Comments: Approximately one third of my students recognized that can-
celation follows from Exercise 3 after multiplying both sides of xy = xz by
x. The rest of the students used a “brute force” approach.
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Exercise 5. Prove that if x, y, z ∈ D, then (zx)(zy) = z(xy) (and similarly,
(xz)(yz) = (xy)z.)
Comments: This turns out to be a somewhat tedious computation, but the
result is useful and meaningful.

Exercise 6. A D-set is defined to be a subset S ⊆ D of the form
S = {x, y, xy}, where x, y ∈ D. Obviously, D-sets correspond to “Sets” in
the card game. Prove that there are a total of 1080 possible D-sets in D
(and hence there are a total of 1080 possible sets in the card game). How
many D-sets can a given element x ∈ S be a member of?
Comments: Most of my class had not taken a course in discrete mathematics
and were not too comfortable with counting arguments. Although many of
the students recognized that 1080 was a result of dividing 81 · 80 by 6,
some needed additional prodding to understand how the 6 accounts for
redundancies in the D-sets. This issue is relevant in the second part of the
question too. While there are 80 possible cards y that can be paired with a
given card x to determine a D-set {x, y, xy}, half of them will be redundant
since x and xy determine the same set as x and y. Hence there are 40
different D-sets containing a given element x.

Exercise 7. Given w ∈ D, define the map Tw : D → D by Tw(x) = wx.
Is Tw a permutation on D? Provide a proof to support your claim.
Comments: This result follows directly from Exercises 3 and 4.

Exercise 8. Suppose that U ⊆ D. Then we say that U is product-free
if xy /∈ U whenever x, y ∈ U. Note that product-free subsets of D translate
into collections of cards that fail to contain a “Set”. Prove that if U is
product-free, then xU is product-free too. (Recall that for any set S ⊆ D
and x ∈ D, xS is defined to be the set xS = {xs | s ∈ S}.)
Comments: Most students used a proof by contradiction here. Assuming
that {xu1, xu2, xu3} is a D-set in xU , (xu1)(xu2) = x(u1u2) by Exercise 5.
Since there is exactly one D-set containing xu1 and xu2, xu3 = x(u1u2).
Hence u3 = u1u2 by Exercise 4, and therefore {u1, u2, u3} is a D-set in U .
This, of course, contradicts the fact that U is product-free. Incidentally,
I found this exercise (as well as the next one) to be particularly useful in
getting students more comfortable with the notion of a coset. While the set
xU is not actually a coset, it certainly is “reminiscent” of one.

Exercise 9. Prove that if S ⊆ D is a product-free set and x ∈ S, then
S ∩ xS = {x}. Conclude that any product-free set can contain at most 41
elements. (This of course means that any collection of 42 cards must contain
a “Set”.)
Comments: This result was inspired by a similar result in [2, p. 901] about
product-free subsets of groups.
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Exercise 10 (An Optional Challenge). The largest known collection of
cards containing no Set is given below. Its cardinality is 20 [5]. If we let α(D)
denote the cardinality of the largest product-free subset of D, then this fact
together with the result of the previous exercise yields 20 ≤ α(D) ≤ 41.
Can you tighten the upper bound on α(D)? That is, can you find an upper
bound that is less than 41, or optimally, can you prove that α(D) = 20?
A product-free set of 20 elements in D:

(0, 1, 0, 0) (0, 2, 0, 1) (1, 2, 0, 0) (1, 1, 0, 1) (2, 1, 0, 1) (2, 2, 0, 0) (0, 0, 2, 0)
(0, 1, 1, 0) (0, 2, 1, 1) (1, 2, 1, 0) (1, 1, 1, 1) (2, 1, 1, 1) (2, 2, 1, 0) (0, 0, 2, 1)
(0, 1, 2, 2) (0, 2, 2, 2) (1, 2, 2, 1) (1, 1, 2, 0) (2, 1, 2, 0) (2, 2, 2, 1)

Remark: In [1], Benjamin Lent Davis and Diane Maclagan describe an
equivalent formulation of the question posed above (as well as the parallel
question for possible generalizations of SET). As they explain, the reformu-
lation involves maximal caps in a four dimensional vector space over the
finite field Z3. Interestingly enough, this equivalent question was answered
by Giuseppe Pellegrino [3] in 1971 - before the SET game was even invented!
Hence, α(D) is exactly equal to 20. Nonetheless, the mathematics involved
in the proof is beyond the scope of a first-semester Abstract Algebra course.
It would be nice to tighten up the upper bound on α(D) using the more
elementary approach outlined in this project.

STUDENT RESULTS

Overall, the results were quite positive. I was pleased that students were
able to work independently on these exercises, requiring little explanation
from me beyond my initial 15-minute introduction. While I encouraged
students to work together on the problems (and they did), I required that
each student submit his or her own write-up. This allowed me to provide
students with helpful feedback on their proof-writing skills. All of this work
was done outside of class, and the result was a class average of 81.5% on
this project.

Student response was favorable. When submitting their work, several
students noted their appreciation of the project because it allowed them to
gain a better working knowledge of so many abstract ideas. In the course
evaluations at the end of the semester, many students cited the SET project
as their favorite part of the course. They described the project as “fun” and
“cool”.

Perhaps most exciting, however, is the fact that one of my students took
me up on my offer for Extra Credit (and of course, he was in no need of
it). On the last day of class, junior math major Jun Ma submitted a nice
result, lowering the upper bound for α(D) from 41 to 33. His work earned
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him a Franklin Miller Award at Kenyon, an award honoring students for
extraordinary work that goes beyond what is required in a course. I include
Jun’s proof below.

Theorem. Let α(D) denote the cardinality of the largest pro-
duct-free subset of D. Then α(D) ≤ 33.
Proof by Jun Ma (Kenyon College, Class of 2005): Let S be a
product-free set in D, say S = {s1, s2, s3, . . . , sn}, and consider the set
s1S = {s1, s1s2, . . . , s1sn}. By Exercise 9, S ∩ s1S = {s1}, so certainly
S ∩ (s1S \ {s1}) = ∅. Now consider all D-sets constructed by picking two
elements x and y in S. Since S is product-free, xy /∈ S. Therefore, there
are n(n − 1)/2 sets that can be formed in this way.

Next consider all D-sets constructed by picking two elements x, y ∈
s1S \{s1}. Clearly, s1S \{s1} is product-free by Exercise 8. Hence there are
(n−1)(n−2)/2 possible sets containing x and y. Since S∩ (s1S \{s1}) = ∅,
the n(n−1)/2 sets formed by choosing two elements in S are different from
the (n − 1)(n − 2)/2 sets formed by choosing two elements in s1S \ {s1}.
And because there are 1080 possible sets in total (Exercise 6), we conclude
that

n(n − 1)
2

+
(n − 1)(n − 2)

2
≤ 1080

or equivalently, n2 − 2n + 1 ≤ 1080. Hence n ≤ 33.86, and since n is an
integer, we can conclude that n ≤ 33. 2

One might try to take Jun’s argument a bit further, by also counting
those D-sets constructed by picking two elements at random from the set
D \ (S ∪ s1S). Unfortunately, such an approach leads to an upper bound of
33.3 which does not improve the result.

PEDAGOGICAL BENEFITS

While I have already cited some of the pedagogical benefits of the SET
project, there are others that deserve mentioning. Most importantly, I be-
lieve that this project is useful because it illustrates that Abstract Algebra is
not just about clever tricks and abstract objects and properties that gener-
alize the integers (as I fear many undergraduates believe.) Rather, Abstract
Algebra is a rich set of tools that allow us to define useful frameworks on a
wide range of situations, making computation and problem-solving possible
- even easy. By defining such a framework on a game so familiar, I believe
that the students see for themselves just how useful and concrete Abstract
Algebra can be.

As a side benefit (and one that I had not anticipated,) I found that the
project served to heighten interest in mathematics in students outside of
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mathematics. Roommates and friends of students in my class were hearing
all about SET and how mathematics could be employed to better under-
stand the game. What a pleasant surprise it was for me to see this level of
enthusiasm among the students!
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