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This is a generalization to color images of earlier results on two-dimensional monochromatic halftoning with error diffusion neural networks (EDNs). Previously we have shown that EDNs find local minima of frequency-weighted error between a binary halftone output and corresponding smoothly varying input, an ideal framework for solving halftoning problems. This work casts color halftoning as four related Sub-problems: the first three are to compute good binary halftones for each primary color and the fourth is to simultaneously minimize frequency-weighted error in the luminosity of the composite result. We show that an EDN with a three-dimensional interconnect scheme can solve all four problems in parallel with user-adjustable emphasis on the relative importance of weighted error in luminosity. We show that an EDN with a three-dimensional interconnect scheme can solve all four problems in parallel with user-adjustable emphasis on the relative importance of weighted error in luminosity. Our results show that the three-dimensional EDN matrix not only shapes the error to frequencies that Human Visual System (HVS) is least sensitive but also shapes the error in colors to which the HVS is least sensitive-namely it satisfies the minimum brightness variation criterion. 

Background

Digital halftoning is a process by which a continuous-tone gray-scale image is rendered using only binary valued pixels. The goal is to create an image that human eyes perceive as a continuous tone image due to the limited spatial frequency response of the human visual system. A classic error diffusion algorithm, such as first introduced by Floyd and Steinberg [1], raster scans the image and perform the quantization and error distribution pixel by pixel in a particular direction. The one-dimensional filter, also called scale error diffusion, often leads to undesirable visual artifacts. In order to overcome the artifacts, we have previously developed a two-dimensional error diffusion algorithm, called an error diffusion neural network [2, 3] that allows the error diffuses symmetrically in all directions in the image plane. The advantage of the neural algorithm is that all pixel quantization decisions are computed in parallel and therefore the error diffusion process becomes un-directional and symmetric. This had eliminated the artifacts caused by the scalar error diffusion.

We have directly implemented the concept of error diffusion neural network to color halftoning using three independent filters, one for each color plane. It has demonstrated excellent image reproduction [4]. However, this does not exploit the correlation among the colorant planes, which is a key element in our color perception and appreciation of the halftone quality. In this paper, a three-dimensional color halftoning method is discussed. We introduce luminosity error matrix as the 3rd dimension for our filter. Luminosity is a quality that corresponds to the relative visual sensitivity of the human eye to the primaries. In our algorithm, luminosity serves as constrain to the halftone fill-in pattern in each primaries. The placement of the dots, relative to each other among three primaries, has to be such that the frequency weighted error in luminosity of the input pixels and output pixels is minimized.  

Theory: Three Dimensional Error Diffusion Neural Interconnects

An EDN for color halftoning has, in our case, three neurons per pixel, one for each primary color.  We assume these are red, green, and blue.  Hence the color of an input pixel is completely described by a triple <xR, xG, xB> ( [0,1]3, and an output pixel by <yR, yG, yB> ( {0,1}3.  Output pixels thus have one of eight possible colors including black and white. 


Figure 1 shows our three-dimensional error diffusion scheme. The arrows indicate the directions in which error diffuses. Take an example of a red pixel, the quantization error diffuses symmetrically in all three dimensions.  The error is distributed by weights WRR to its neighbor red pixels as well as to nearby green pixels by interconnect weights WRG and to blue pixels by interconnect weights WRB. The same scenario applied to green and blue pixels. The in-plane error diffusion weights, WRR, WGG and WBB, can be taken as the ones we found in the grayscale case [2].
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The sum of the weights is -1 so that the error is not amplified or reduced and the total intensity is kept the same for each primary. Since we already found a good weights for in-plane error diffusion, the key to our new finding is to compute the cross plane weights, WRG, WRB and WGB, the 3rd error diffusion dimension. The cross plane weights must maintain the advantages of un-directional and symmetric. The sum of the weights must be zero so that there is no net transfer of color from one primary to others. 

Minimizing luminosity error

The luminosity of an arbitrary pixel <r, g, b> is
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The constants (R, (G, and (B correspond to the relative visual sensitivity of the human eye to the primaries. Standard values are 
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 We claim that to produce good color halftones, an EDN must perform four tasks simultaneously:

· Minimize frequency weighted error between red outputs and inputs, and the same for green and blue.

· Minimize frequency-weighted error between luminosity of the output and luminosity of the input.

The importance of the first three tasks is clear.  They can be performed by three separate EDNs working independently. The last is more subtle and best illustrated by examples. Suppose there are four pixels that can be filled by red, green or blue. If not filled, the pixel is black. If filled by all red, green and blue, the pixel is white. There are many ways to fill them. One possible result is to have red, green, blue and black pixels. Another result is to have three black pixels and one white pixel. All these results are equally likely if the red, green, and blue outputs are computed independently. Yet, they are far from equal in quality with respect to luminosity error. Clearly some methods of combining red, green and blue primaries are better than others. Thus, our analysis is directed at “synchronizing” the red, green, and blue halftoning solutions so that luminosity error is shaped concurrently with error in each of the primaries. 

For the moment, consider the luminosity error between the input pixel  <xR, xG, xB>  and output pixel <yR, yG, yB>, 
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Hence the “luminosity error” energy function we would like to minimize is 
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The matrix form is more succinct. Hence, Eq. 3 may be generalized for color by substituting luminosity of the color image.
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Where
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and 
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In other words, we apply what is known about minimizing frequency-weighted error in monochromatic halftones to the problem of minimizing luminosity error in color halftones.

Minimizing error for each primary

The energy function for an EDN that minimizes error in the red primary of a color image is [2]
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where
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and we can write similar terms for green and blue. Matrix A is Toeplitz and symmetric. The value of A depends on the interconnection weights, W, of the EDN,
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We have designed 7x7 interconnects weights that yield good halftones shown as Eq 1.  They comprise a low pass filter with gain near -1 at low frequencies, increasing toward zero at higher frequencies, giving the ai a shape very close to the empirically measured psychometric response of the human eye.

Since minimizing the primaries comprises three independent problems, all can be solved by a single EDN minimizing
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where
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EDN three dimensional interconnection weights

The similarity of Eqs. 4 and 8 allows for a single EDN that minimizes a linear combination of the luminance and primary color energy terms. 
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where (R, (G, (B > 0 set the importance of primary color errors relative to luminance and ( > 0 is an arbitrary constant that provides an additional degree of freedom.

The combined energy function matrix Ac has the following structure.     
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where C *D multiplies each element of C by D as though D were a scalar.

It remains to solve for the interconnection weights of the EDN Wc. From Eq. 7,
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Convergence of the EDN requires 
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Because diag(A-1) equals to -1 by construction for the monochrome EDN. To recap, Eq. 10 is a constraint on energy minimizations that can be performed by the color EDN. It is imposed by EDN convergence criteria.

Here a change of variables simplifier the problem. Let 
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we have
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Thus constraint Eq. 10 is equivalent to saying 
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Where d is an arbitrary positive value, whereupon we choose
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Hence,
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as desired.

Let kij be the ijth element of K-1. If we consider the color halftoning EDN to be organized as three “planes” of neurons—red, green, and blue—then Eq. 15 implies that the interconnection weights of neurons within any plane are identical to W for monochrome halftones. We can use the same convolution kernel. Connections between the red and green planes are k12(W + I). The corresponding convolution kernel is obtained by replacing the center zero of the monochrome kernel with a one and multiplying the whole by k12 = k21. Note that the resulting kernel sums to zero. Thus error in one plane influences only the phase of patterns in the others, not their mean values. Red-blue and green-blue interconnections are similar, using k13 and k23 respectively. For example, choose (R = 2; errors in the red color plane have two times the weight of luminosity errors in the minimization performed by the EDN. Then we find (G = 1.7, (B = 2.0, k12 = -.0842, k13 = -.0133, and k23 = -0.0299.

Results and Discussion

To experiment and compare with varies filters, we created a gray scale image shown in Fig.2(a). The value of the pixel is 179, which is about 70% of its maximum brightness of 255. First, we performed a gray scale halftone to the image using two-dimensional filter matrix in Eq. 1. The result is shown in Fig. 2 (b). As expected, there are about 30% of the pixels filled with black, other 70% are white. Then, we treated the image as a color image with 179 RGB values in each primary. When we performed color halftoning using the identical two-dimensional filter (Eq. 1) for each color plane independently, we got a halftone image shown as Fig 2(c). From the enlarged section, it is shown the pixels are made of all possible eight colors, including black and white. As explained earlier, this is because all combinations of the red, green, blue colors are equal likely when the color planes are treated independently. However, when we performed color halftoning using our new three-dimensional filter with (R = 2, the pixels are consisted of only six colors. The black and blue pixels are diminished due to constrain of minimizing the luminosity error. The result is shown in Fig 2(d). The enlarged pixel pattern in Fig. 2(d) has smoother color transitions and less brightness contrasts compared to Fig. 2(c). As a result, the effect of halftone texture, which contents pixel patterns with distinguished color spikes, is minimized. Thus the overall image appears to have a more homogeneous tone.
                                 [image: image26.png]  [image: image27.emf]
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We further compared our two-dimensional and three-dimensional halftoning algorithm on a colored image shown in Fig. 3. We observed similar results to the gray scale image. While both algorithms yield the same visually averaged color representing the original image, as we look into the pixels, the three dimensional filter results in overall uniformly filled pixels, less black and white dots, thus reduced color noise. 

    [image: image33.png] [image: image34.png]  [image: image35.png]

These two examples have demonstrated that our three-dimensional EDN algorithm inevitably supports “the minimum brightness variation criterion (MBVC)” which is based on the characteristics of the human visual system color perception to the error diffusion pattern. It is shown [5] that brightness variation between adjacent dots is a major cause of color noise, and a better halftone quality can be obtained by limiting the number of output colors in a local area. Different methods have been studied to constrain primaries with this criterion [6,7,8]. Our three-dimensional error diffusion has demonstrated its superiority of satisfying MBVC as a consequence of minimizing luminosity error. 

Future Direction 

This research will continue to develop and improve the error diffusion neural network algorithm for digital image processing and color halftoning. A quantitative calculation on the performance metrics to evaluate the halftone process will be studies. 
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Figure 1. Three-dimensional EDN



 Fig. 2(a) The original gray scale continuous tone image



Fig. 2(b) A halftone image using grey scale EDN



Fig. 2(c) Color halftoning using two-dimensional grey 

scale EDN independently on each color plane.



Fig 2(d). Color halftoning using the three-dimensional 

interconnect weights when (R=2.0



Fig 3(c). Color halftoning using the  three-dimensional 

interconnect weights when (R=2.0



 Fig. 3(a) The original color image.



Fig. 3(b) Color halftoning using two-dimensional grey scale EDN independently on each color plane.
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