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Abstract
Smart pixel technology is a relatively new field which integrates electronic circuitry with

optoelectronic devices in an effort to improve overall performance of existing applications and enable new
applications not previously envisioned with either single technology.  Smart pixels leverage the functionality
and programmability of established electronic circuit technology and the high-speed switching and parallelism
of arrays of optoelectronic devices.  A smart pixel hardware implementation of the error diffusion neural
network would provide the capability of real-time image halftoning for applications such as xerography, laser
printing, and facsimile.  The highlights from three smart pixel projects are described including the design,
simulation, and experimental characterization of each.

Introduction
Smart pixel technology is a relatively new approach to integrating electronic circuitry and

optoelectronic devices in a common framework.  The purpose is to leverage the advantages of each individual
technology and provide improved performance for specific applications.  Here, the electronic circuitry provides
complex functionality and programmability while the optoelectronic devices provide high-speed switching and
compatibility with existing optical media.  Arrays of these smart pixels leverage the parallelism of optics for
interconnections as well as computation.

There are a number of different approaches to fabricating smart pixels which generally differ in the way
in which the electronic and optical devices are integrated.  Monolithic integration, direct epitaxy, and hybrid
integration are the three most common approaches in use today.  Monolithic integration allows both the
electronics and the optical devices to be integrated in a common semiconductor material in a single growth
process or by utilizing a re-growth process.  The material of choice here would be a compound semiconductor
material such as GaAs, InGaAs, or InP.  Potentially, this approach would produce faster smart-pixels;
however, there exist difficulties in the simultaneous optimization of both the electronic and optical circuits on
the same substrate.  Direct epitaxy of compound semiconductors onto silicon is another approach.  The
problems here are typically a result of lattice mismatch and differences between the coefficients of thermal
expansion between the two materials.  For example, the lattice mismatch between silicon and GaAs is 4%
while the thermal expansion coefficients differ by 50%, resulting in a potentially unstable bond between the
two dissimilar materials.  Catastrophic failure of these devices typically occurs at this interface as a result of
stress, strain, and sheer of the crystalline material.  Hybrid processing is the third approach to developing
smart-pixels. Here the optical devices are grown separately from the silicon electronic circuitry.  Then in a
subsequent processing step, the optical devices are bonded to the silicon circuitry using a variety of bonding
techniques.  These include flip-chip bonding, epitaxial lift-off and subsequent Van der Waals (contact)
bonding, and creating a physical cavity above the silicon circuitry and flowing-in optical material such as
liquid crystal material.  Using this third approach, both the optical devices and the electronic circuits can be
independently optimized resulting in an overall optimization of the smart-pixel.

Current Smart-Pixel Research
Over the past two years, we have become actively involved in the smart pixel technology field,

designing, fabricating, and experimentally characterizing several different smart-pixel architectures focused
principally on hardware implementations of the error diffusion neural network.  In this report, we highlight a
few of our research accomplishments in this program.  Complete details of the design, simulations, and
experimental results can be found in the publications listed at the conclusion of this report.

Here, we report on three specific smart pixel architectures: a 3 × 3 monolithically integrated neural
array project called OPTOCHIP, two-generations of a 5 × 5 CMOS-SEED implementation of the error
diffusion neural network, and a 7 × 7 diffractive optical filter which optically implements the 7 × 7 error
diffusion filter of the error diffusion neural network.



Figure 1.  OPTOCHIP – SEM of regrown LED;
photomicrograph of a single neural circuit; 3 × 3
neural array; and a single operational LED.

3 × 3 OPTOCHIP Smart Pixel Array
OPTOCHIP is one of several different smart pixel realizations currently being investigated.

OPTOCHIP is a monolithically integrated smart pixel which integrates GaAs/InGaP LEDs with GaAs
electronics using a technique called epitaxy-on-electronics (E-O-E).  The architecture for this smart pixel
design was a 3 × 3 neural array which was designed to characterize the three functional components necessary
for the implementation of an optoelectronic neuron which ultimately will be employed in the smart pixel
realization of the error diffusion neural network.  The three components are:  1) detection and amplification of
the optical input signal, 2) a specific nonlinear sigmoidal function for thresholding, and 3) optical
transmission of the resulting output signal.  The solid state circuitry, which includes OPFET detectors and

amplification circuitry, DCFL circuitry to produce the
sigmoidal function, and driver circuitry for light
emitting diodes (LEDs), was manufactured in a 0.6
µm Vitesse HGaAs III process available through the
MOSIS foundry service.  50-µm × 50-µm
GaAs/InGaP LEDs were then integrated into the
electronics circuitry at MIT using the E-O-E post-
process regrowth technique. Researchers from West
Point participated as one of eight design groups
sponsored by the National Center for Integrated
Photonic Technology (NCIPT) under DARPA
sponsorship and the direction of Professor Clif
Fonstad at MIT.

Figure 1 shows several images of the USMA
OPTOCHIP circuitry.  The top image is an SEM of
the regrown LED and some of the electronic circuitry.
The driver circuitry is shown below the LED with the
neural circuitry shown on the left.  The second image
is a photomicrograph of one neuron of the 3 × 3
neural array.  The OPFET detector, the neural logic
circuitry, driver circuitry , and LED are all identified.
Finally, on the bottom are photomicrographs of the
3 × 3 array and a single operational LED.

Experimental results have been compiled on the
performance of two of three smart pixel components:
the threshold circuitry and the LEDs.  For the
threshold circuitry, the slope of the sigmoidal
function was significantly less than predicted by
simulation, 3.5 compared to 41.2.  This is shown in
the quantizer performance of Figure 2.  For our

neural network application, however, this will not preclude network operation but will simply slow its
convergence time somewhat.  The experimental data confirmed a slight variation in performance of the circuit
based on its position on the chip but this is not expected to significantly effect the performance of the neural
network.

Nine LEDs were tested on each of two chips.  The uniformity in the L-I curves for these LEDs, shown in
Figure 3,  was relatively poor.  All emitted light, however, only one-third emitted sufficient light to be useful
for this specific application.  Spectrally, the LEDs were consistent, having a mean center wavelength of 872.5
nm with σ = 1.4 nm and a mean full-width half-maximum (FWHM) of 31.0 nm with σ = 2.5 nm.  The
spectral data from one representative LED is shown in Figure 4.  Our MIT collaborators have recently
demonstrated greater uniformity and yield subsequent to this fabrication with larger LEDs and improvements
in the manufacturing process have been identified to further increase uniformity and yield.



QUANTIZER PERFORMANCE -
SIMULATED vs. MEASURED
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Figure 2.  OPTOCHIP quantizer performance.L-I CURVES FOR OPTOCHIP LEDs (Chip #815)
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Figure 3.  L-I curves for one representative OPTOCHIP.

USMA OPTOCHIP LED SPECTRAL DATA
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Figure 4.  Spectral characteristics of a single OPTOCHIP
LED.

Other experimental data remains to be
collected on: the responsivity of the OPFET
detectors, dynamic performance of each
component, and a demonstration of a 1st-
order oversampled modulator using all three
components together.  When the
experimental results are concluded we
anticipate providing a complete evaluation of
the performance and applicability of this type
of smart pixel technology to the error
diffusion neural network architecture.

5×5 CMOS-SEED Smart Pixel
Array

Here, we report on the results of two
consecutive generations of SEED MQW
modulators integrated with CMOS silicon
circuitry using a flip-chip bonding hybrid
integration approach.  The first generation
CMOS-SEED consisted of a 10 × 10 array of
SEED MQW modulators integrated with 0.8
µm CMOS silicon circuitry while the second
generation integrated an identical SEED
array with 0.5 µm CMOS silicon circuitry.
The focus of both of these designs was to
demonstrate the usefulness of smart pixel
technology to this specific analog neural

application.  Although optical weighting and
interconnections are clearly the preferred
method of achieving the necessary neural
interconnections, neither of these designs
incorporated this approach.  Instead,
electronic weighting and interconnections
were incorporated in the design with analysis
focused on optimizing the specific
performance of the analog neural circuitry
and the receiver and driver circuitry for the
optical input and output signals, respectively.
In a parallel effort within this research
program, diffractive optical weighting and
interconnections have recently been designed
and experimentally characterized for a future
smart pixel architecture.  An overview of
these results will be presented later in this
report.

First-Generation CMOS-SEED
 The functionality necessary to implement the error diffusion neural network consists of a one-bit
quantizer, two differencing nodes, and the interconnection and weighting of the error diffusion filter.  Figure 5
shows the first-generation circuitry for a single neuron of the error diffusion neural network using the CMOS-
SEED smart pixel technology.
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Figure 5.  Circuit diagram for the first-generation smart pixel implementation of the
error diffusion neural network based on a CMOS-SEED-type smart pixel architecture.

All state variables
in each circuit are
represented as

currents.
Beginning in the
upper-left of the
circuit and then
proceeding in, the
input optical signal
incident on the
SEED is
continuous in
intensity and
represents the
individual analog
pixel intensity.
The input SEED at
each neuron

converts the optical signal to a photocurrent and subsequently, current mirrors are used to buffer the input.
The width-to-length ratio of the metal oxide semiconductor field effect transistors (MOSFETs) determine the
current gain used to amplify the photocurrent.  The first circuit produces two output signals: +Iu which
represents the state variable u(m,n) as the input to the quantizer and -Iu which represents the state variable -
u(m,n) as the input to the feedback differencing node.  The function of the quantizer is to provide a smooth,
continuous thresholding function for the neuron producing the output signal Iout which corresponds to the state
variable y(m,n).  This second electronic circuit is a modified wide-range transconductance amplifier which
produces a hyperbolic tangent sigmoidal function when operated in the sub-threshold regime.  Additional
transistors are included in the modification to provide input current to output current functionality.  The third
circuit takes as its input Iout, the state variable y(m,n), produces a replica of the original signal, and drives an
output optical SEED.  In this case, the output optical signal is a binary quantity represented as the presence or
absence of light.  Here, the photoemission process is electroluminescence which results from the SEED being
forward-biased.  The last circuit at the bottom of the schematic implements the error weighting and
distribution function of the error diffusion filter.  The weighting is implemented by again, scaling the width-
to-length ratio of the MOSFETs to achieve the desired weighting coefficients.  The neuron-to-neuron
interconnections are accomplished using the four metalization layers of the 0.8 µm silicon CMOS process.
The difficulty encountered using this weighting and interconnect approach was that we were forced to
constrain the size of the diffusion kernel to a 5 × 5 array because of the physical extent of the circuitry
necessary to implement this functionality.  Even with this reduced filter kernel, the weighting and interconnect
circuitry consumed over 75% of the total silicon area.  As a result, a smaller filter with a 5 × 5 region of
support was designed and these coefficients were used in the smart pixel architecture.  The five unique
coefficients in this filter are shown at the bottom of the error diffusion circuitry along with the number of
additional replications necessary to implement the 5 × 5 filter.

Figure 6 shows a photomicrograph of a single neuron of the first-generation error diffusion neural
network.  This smart pixel implementation resulted in a network with approximately 90 transistors per smart
pixel and a total transistor count of nearly 1800.  A total of 50 optical input / output channels are provided in
this implementation.  The rectangular features are the MQW modulators while the silicon circuits are visible
between the modulators.  The MQW modulators are approximately 70 µm × 30 µm and have optical windows
which are 18 µm × 18 µm.

We have experimentally characterized some of the functionality of this first-generation smart pixel circuit.



Figure 6.  Photomicrograph of a single neuron of the 5 × 5 error
diffusion neural network.
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Figure 7.  Circuit diagram of a single neuron and a single error weight of the
5 × 5 error diffusion neural network based on a CMOS-SEED-type smart pixel
architecture.

To date, experimental testing has
confirmed electrical functionality of
the quantizer operation as well as the
replication features of the current
mirrors within the architecture.  We
have also verified and characterized
the electroluminescence of the SEED
modulators.  These experimental
results demonstrated the importance
of transistor matching within the
wide-range transconductance
amplifier and the error weighting
circuitry.  The results from this first-
generation design and
characterization were incorporated
into the second-generation design in
an effort to improve individual circuit
operation and, as a result, improve
overall network performance.

Second-Generation CMOS-SEED
In the design of the second-generation CMOS-SEED smart pixel, we concentrated on improving the

performance of the neural circuitry.  Specifically, we improved the error weighting circuitry and the quantizer
performance.  We also attempted to accurately model the operation of each of the functional elements as well
as the total nonlinear network performance using SPICE simulation tools.  The same 5 × 5 array size and

functionality of one-bit
quantization, subtraction,

neuron-to-neuron
weighting and
interconnection, and
optical input and output
were retained.  The
electronic circuitry for the
error diffusion neural
network was
implemented this time in
0.5 µm silicon CMOS
technology.  Figure 7
shows the circuitry
associated with a single
neuron of this second-
generation error diffusion
neural network.  The one-
bit quantizer is again
implemented using a
modified wide-range

transconductance
amplifier operated in the
sub-threshold regime.  The
slope of this sigmoidal

function was carefully designed by matching MOSFET transistors to meet the convergence criteria and the
nonlinear dynamics of the error diffusion neural network.  The error weighting circuitry at the bottom
represents only the largest weight (11.02%) with interconnects to its four local neighbors (IoutA - IoutD).



Figure 9.  Dynamic performance characterization of the 5 × 5 error
diffusion neural network to a stepped linear input.

Again, all state variables are represented as currents.  The error weighting and distribution circuitry for
the 5 × 5 array was again implemented in silicon circuitry, matching individual and stage-to-stage MOSFET
transistors.  Bi-directional error currents were implemented to provide the circuitry and the network with fully-
symmetric performance.  The specific improvements to the second-generation circuitry include improving
stage-to-stage isolation by tying the drain and source of selected transistors together, as seen with transistors
M19 and M20 in the schematic.  This configuration places a constraint on the common node which helped
isolate adjoining stages.  This was particularly important to accurate circuit operation since the design of the
wide-range transconductance amplifier required small feature size transistors compared to the input buffer and
error weighting circuitry.  In the circuit layout, we also changed several of the transistors in the wide-range
transconductance amplifier to ensure that small width-to-length ratios were used in an effort to minimize
channel length modulation effects.  The SEED driver circuit was redesigned to provide additional isolation
between the large currents used to forward bias the SEED and the balance of the sensitive neural circuitry.
Finally, we accurately matched transistor characteristics throughout the network using extracted transistor data
from a previous 0.5 µm foundry run.

Figure 8(a) shows SPICE simulations of the input-output relationship of the wide-range transconductance
amplifier as well as the error signal resulting from the difference between the input and output of the
quantizer.  Figure 8(b) shows the linearity of each of the five unique interconnect weights over the entire
operating range of the circuit.  The quantization functionality resulted in a signum function with a slope of 14
while the linearity of each of the error weights was within 2% of the design specifications.  Optical input and
output to each neuron was implemented using the SEED MQW modulators as in the first-generation design.

                       (a)         (b)
Figure 8.  (a)  Quantization and error relationship for the wide-range transconductance amplifier, and (b)
Modeled linearity performance of the error weighting circuitry.

The central neuron of this new smart pixel array consists of approximately 160 transistors while the
complete 5 × 5 array accounts for over 3600 transistors, a nearly two-fold increase in the total transistor count

over our first-generation design.  The
central neuron is interconnected to
the surrounding 24 neurons in the
5 × 5 array using the same fixed
interconnect and weighting scheme
as in the first-generation realization.
SPICE simulations of the complete 5
× 5 nonlinear dynamical neural
network were performed using
transistor parameters extracted from
a previous 0.5 µm MOSIS foundry.
Figure 9 shows the SPICE simulation
for the performance of the complete
5 × 5 array to a linear input signal.
As the input signal is linearly
increased over the input dynamic
range, the number of neurons in the
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Figure 10. Transient analysis of 5 × 5 network. performance.
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Figure 11.  Two-dimensional weighting and spatial
distribution of the diffractive optical filter.

on-state increases from 0 to 25, representing the analog input level at any given time interval as the ratio of
the number of neurons in the on-state to those in the off-state.  The non-uniform rate of increase in the number
of neurons in the on-state is predictable and is a result on the artificially small network size.  Figure 10 shows
an expanded segment of Figure 9 which provides an analysis of the transient behavior of the network.  These
simulations predict individual neuron switching speeds of less than 1µs demonstrating the capability for real-

time digital image halftoning.
Both the SPICE simulations and the

experimental results to date demonstrate
that this approach to a smart pixel
implementation of the error diffusion
neural network provides sufficient
accuracy for the digital halftoning
application.  The individual neuron
switching speeds also demonstrate the
capability for this smart pixel hardware
implementation to provide real-time
halftoning of video images.

7 × 7 Diffractive Optical Filter
As mentioned previously, optical weighting and interconnection is the preferred method for providing the

error diffusion filtering functionality in the error diffusion neural network.  In this specific project, a 7 x 7
non-uniform array generator was fabricated and experimentally characterized for this filtering function.  The
diffractive optical filter will be used in a future smart pixel architecture to spatially redistribute the
quantization error generated in the error diffusion neural network.

The diffractive optical filter was designed using an iterative Fourier transform algorithm (IFTA) with the
resulting spot distribution being formed in the back focal plane of a Fourier transforming lens.  The objective
of the design was to implement a discrete-level representation of a continuous-phase surface profile that

generates a specific 2-D weighting and spatial
distribution which is a non-uniform array with
unequal spot spacing in the two spatial dimensions,
shown in Figure 11.  The surface profile is
optimized to balance the error from the desired
weights and the diffraction efficiency.

The diffractive filter was designed to be
incorporated into a CMOS-SEED smart pixel
implementation of the error diffusion neural
network which dictated the wavelength and spot
spacing to be 850 nm and 160 µm x 80 µm,
respectively.  A 50 mm lens was selected as the

Fourier transforming lens.  The interconnect and weighting distribution shown in Figure 11 represents the
impulse response of a 2-D error diffusion filter with a circularly symmetric frequency response and a cutoff
frequency of 0.25π.

The IFTA was used to compute the optimal eight-level surface relief to produce the coefficient distribution
in Figure 11.  The number of features in the unit cell were 128 × 128 with the individual feature size being 2.1
µm × 4.2 µm.  The unit cell was replicated 37 × 18 times to produce a filter approximately 1cm × 1 cm in size.
The elements were fabricated by Honeywell Advanced Technology Center on 3 inch diameter fused silica
substrates 0.5 mm thick with a refractive index of 1.4525.  Ten separate 1 cm × 1 cm elements were delivered
for characterization along with a detailed fabrication process error summary.

The etch depth errors were measured at several test locations on the 3 inch wafer substrates to an accuracy
of 0.2 nm.  For our specific samples, deviations from ideal etch depths for the three etches were: –1.7 nm for
the π/4 etch (234.8 nm), –0.8 nm for the π/2 etch (469.6 nm), and –6.1 nm for the π etch (939.2 nm). These
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Figure 12.  Comparison of designed and measured coefficients

measured errors were subsequently used as phase substitutions in the IFTA and the coefficient weighting was
recomputed and normalized.

The measured spatial distribution of the diffractive optical filter can be compared with the desired
distribution through an RMS error analysis.  In general, the RMS error can be defined as

                       (1)

where M × N represents the spatial extent of the diffusion filter.  In our application, M=N=7.  The RMS error
between the design coefficients and the coefficients resulting from etch depth errors is 0.040%.

The mask alignment errors were measured using a two-dimensional vernier grid to a precision of 0.125
µm.  The composite mask alignment error, defined as the root sum square of the two orthogonal measurement
errors for mask 1-to-2 was 0.18 µm while for mask 1-to-3 was 0.15 µm.  These alignment errors constitute
approximately 8% of the feature size of the element and result in a reduction in the theoretical diffraction
efficiency by a factor of 0.92.

For filter characterization, a tunable Ti: sapphire laser was coupled into a fiber and the output beam was
then collimated.  The diffractive filter was placed in the front focal plane of a 75 mm Fourier transforming
lens.  The back focal plane or Fourier plane was then imaged through an adjustable, rectangular aperture to
provide individual access to each spot in the array.  Using a beam splitter, the array was viewed on one axis
with a CCD camera and the optical power was simultaneously measured on the other axis using an Anritsu
ML9001A optical power meter with a MA9411A power sensor.

In the characterization, we considered three performance metrics: the accuracy of the spatial distribution,
the diffraction efficiency, and the power uniformity across the diffractive filter.  By collecting data on all ten
samples, we were able to analyze process uniformity as well as determine an average spatial distribution across
the ten samples.  A 75 mm lens was used in place of the 50 mm Fourier transforming lens resulting in a
simple scaling of the theoretical spot spacing from 160 µm x 80 µm to 240 µm x 120 µm according to the
equation d=λf/W, where d, λ, f, and W are the spot spacing, wavelength, focal length of the transforming lens,
and grating period, respectively.  To measure the spot spacing, a knife edge controlled with a differential
micrometer was inserted into the Fourier plane.  By observing the image with the CCD camera, the spacing
between each row in both the i- and j- dimensions was measured.  The average spot spacing over this ensemble
was 239.0 µm × 118.4 µm resulting in an error of 0.42% × 1.33% with standard deviations of 1.34 × 1.22,
respectively.  Assuming a diffraction-limited spot size and a 50 mm Fourier transforming lens, these spacing
errors will not adversely effect the performance of the network.

To experimentally measure the power distribution, the rectangular aperture was used to isolate each spot
in the array.  The optical power at each location was measured with this process being repeated for each spot

in the array for all 10 diffractive optical
filters.  The power measurements for
each array were normalized and the
power at each position averaged across
all 10 samples.   Figure 12 shows the
average of the measured power
distribution for each of the 49
coefficients in the array.

The RMS error was again
computed, this time comparing the
designed and measured coefficients in
each array position.  The RMS error
for the measured distribution is
0.079% yielding extremely good
correlation.  The RMS error between
the measured coefficients and the
coefficients resulting from the etch



depth analysis was 0.059%.
The average value of each of the nine unique, non-zero coefficients from the measured distribution was

next compared with the design value for the corresponding coefficient.  With the exception of the extreme
corner positions and the central coefficient (zero diffraction order) in the array, the total error for each
coefficient in the array was bounded by ±8% when compared to the design coefficients.  When compared to the
IFTA predicted coefficients, which accounted for fabrication errors, the total error drops to ±4%.  In the
extreme corner coefficient positions, we note considerable coefficient errors for both the measured distribution
and for the distribution accounting for fabrication etch depth errors.  These errors are 26.6% and 10.0 %
respectively.

The ±4% error between the IFTA coefficients and the measured coefficients is well within instrumentation
errors.  The power meter accuracy is specified as ±5% at a power level of –23 dBm.  Experimental power
levels ranged from –18 dBm to –70 dBm at the extreme corner positions, accounting for the additional errors
encountered in those positions.

Due to the requirement for zero-order suppression, we define the diffraction efficiency as the ratio of the
total power in the 7 × 7 array to the total power incident from the source.  For a continuous profile phase-only
element, the upper bound on diffraction efficiency is 93.72%.  An eight-level phase only element has an upper
bound of 91.15%.  The fabrication errors discussed earlier reduce this by a factor of 0.92 to 83.8%.  The

average measured diffraction efficiency for the ten filters was 83.7% with a standard deviation of 3.65
resulting in extremely good correlation to that predicted by theory.

The power uniformity across the surface of the filter is another important parameter that was measured by
translating the filter in both the i-and j- dimensions while monitoring the power in one single array position.
The array position selected had a power of –34 dBm and the maximum power fluctuation across the entire
element was ±4%, again well within the instrumentation error of the power meter.  This measurement
demonstrates the feasibility of using a diffractive filter to process an entire image and all of its associated
quantization errors simultaneously.

To determine how the filter would perform in an error diffusion network, we used two approaches: a
computer simulation in which we compared halftone representations of a gray-scale image processed through
the filter using several different sets of coefficients and a uniform gray-scale comparison.  A gray-scale image
was halftoned using both the ideal and the measured coefficients. No noticeable differences between the two
images were found and no visual artifacts or distortions were introduced as a result of coefficient errors.

Additional simulations were conducted to determine the impact of the large corner coefficient error and
the incomplete suppression of the central coefficient.  The same image was processed with the corner
measured coefficient error reduced to 7.5% and again with the central coefficient set to zero.   In a detailed
analysis of these images, no differences between the corrected images and the actual measured coefficient
image could be found.

In the uniform gray-scale comparison, we considered two measures: average gray-scale accuracy of the
output and anisotropy.  A 25% gray image was first processed using both the design and measured
coefficients. Ten images, each 256 × 256 were processed and yielded an output average gray-scale of 0.248772
with a standard deviation of 0.02 for the designed coefficients.  For the measured coefficients, the average
gray-scale was 0.247742 with a standard deviation of 0.04 resulting in a 0.4% error from the designed filter’s
performance.  Anisotropy is a quantitative metric for judging the quality of a halftoning algorithm.  Using the
measured coefficients and fixed gray-scales of ½, ¼, 1/8, 1/16 and 1/32, the anisotropy curves were
consistently –10 dB (lower bound) and indistinguishable from those produced by the design coefficients.

Conclusions
Through this research, we have gained significant experience with and insight into the advantages and

disadvantages of the different types of smart pixel technology.  We have developed the ability to design and
fabricate analog smart pixel circuitry with reproducible precision and have characterized all of the necessary
components of a smart pixel implementation of the error diffusion neural network.



Future Directions
Future efforts will continue to improve the analog neural circuitry performance and integrate the optical

error weighting and distribution into a fully-functional architecture.  Smart pixel technology incorporating
vertical cavity surface emitting lasers (VCSELs) will also be investigated.  Other image processing
applications, beyond digital image halftoning, may also be investigated.
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