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Abstract
A novel approach to digital image halftoning is proposed based on a symmetric error diffusion algorithm,

a new form of artificial neural network, and a smart-pixel optoelectronic architecture.  Using an error
diffusion neural network, all pixel quantization decisions are computed in parallel and therefore fully-
symmetric error diffusion can be accomplished.  As a result, visual artifacts such as directional hysteresis and
transient behavior near boundaries which have become characteristic of classical unidirectional error diffusion
techniques are eliminated.   This new artificial neural network computes the halftoned image asymptotically
faster than classical error diffusion techniques and has demonstrated faster image convergence than more
recent massively parallel halftoning algorithms.

Introduction
Optics has long held the promise of high-speed, high-throughput parallel information processing.  The

focus of its early applications was on analog signal processing techniques such as the optical Fourier
transform, matrix-vector processors, and correlators.  During this period, optics was used almost exclusively
for front-end, pre-processing of wide-bandwidth, high-speed analog signals which were subsequently digitally
processed using electronic techniques.  Digital signal processing, however, provides higher resolution,
improved flexibility and functionality, and increased noise immunity over its analog counterparts and therefore
is the preferred method for accurate signal processing.  Since the majority of signals encountered in nature are
continuous in both time and amplitude, the analog-to-digital (A/D) interface is generally considered to be the
most critical part of the overall signal acquisition and processing system.  Because of the difficulty in
achieving high-resolution and high-speed A/D converters, this A/D interface has been and continues to be a
barrier to the realization of high-speed, high-throughput systems.

Digital image halftoning1 is an important class of A/D conversion within the context of image processing.
Halftoning can be thought of as an image compression technique whereby a continuous-tone, gray-scale image
is printed or displayed using strictly binary-valued pixels.  Common applications of this technique include
laser printing and xerography and more recently, facsimile.  Error diffusion2 is one approach to digital
halftoning in which the error associated with a nonlinear quantization process is diffused within a local region
and subsequent filtering methods employed in an effort to improve some performance metric such as signal-to-
noise ratio.  Classical error diffusion is a one-dimensional, serial technique in that the algorithm raster scans
the image from upper-left to lower-right and as a result, introduces visual artifacts directly attributable to the
halftoning algorithm itself.  A fully-parallel implementation of the error diffusion algorithm, however,
provides the advantage that all pixel quantization decisions are computed in parallel and therefore the error
diffusion process becomes two-dimensional and potentially symmetric.  Visual artifacts attributable to the
halftoning algorithm are eliminated and overall halftoned image quality is significantly improved3.  Because of
the massive interconnect requirement associated with the 2-D neural network approach, an optoelectronic
implementation is the preferred method to implementing this fully-parallel architecture.

In the process of developing an optoelectronic implementation of the error diffusion algorithm we have
developed a new artificial neural network architecture based on the mathematical formalism of the error
diffusion algorithm called an error diffusion neural network4.  One significant advantage of this new
implementation is that arbitrary size and shape diffusion kernels can be implemented thereby reducing the
visual artifacts which have become characteristic of halftoned images. This can be accomplished with no
penalty in terms of computation speed.  The error diffusion neural network computes the halftoned image
asymptotically faster than a conventional Hopfield-type neural network.  The error diffusion neural network
also provides full-rank connectivity across the entire image whereas other error diffusion techniques only
provide local error diffusion.  We have quantitatively compared the resulting halftoned images with those
produced using other halftoning techniques using performance metrics such as the radially averaged frequency
spectrum and anisotropy of continuous-tone gray-scale images.  The halftoned images that result from this



new halftoning process produce artifact-free halftone images and are currently among the best quality
halftoned images available.

Digital Image Halftoning
Digital halftoning, sometimes referred to as spatial dithering, is the process by which a continuous-tone,

gray-scale image is rendered using only binary-valued pixels.  The underlying concept is to provide the viewer
of the image the illusion of viewing a continuous-tone image when, in fact, only black and white pixel values
are used in the rendering.

There are a number of different methods by which this digital image halftoning can be accomplished.
Ordered dither, produces an output by comparing a single continuous-tone input value against a deterministic
periodic array of threshold values.  Dispersed-dot ordered dither5 occurs when the halftone dots are of a fixed
size, while clustered-dot ordered dither simulates the variable-sized dots of printer's halftone screens in the
rendering.  Among the advantages of ordered dither techniques are speed of implementation and simplicity.
The primary disadvantage is that ordered dither produces locally periodic patterns in the halftoned image
which are visually objectionable.  In contrast, halftoning using the error diffusion algorithm, first introduced
by Floyd and Steinberg2, requires neighborhood operations and is currently the most popular neighborhood
halftoning process.  In this algorithm, the error of the quantization process is computed and spatially
redistributed within a local neighborhood in an effort to influence pixel quantization decisions within that
neighborhood and thereby improve the overall quality of the halftoned image.  Classical approaches to error
diffusion, however, suffer from implementation constraints.  Here, the algorithm raster scans the image, and
for each individual pixel, a binary quantization decision is made based on the intensity of the individual pixel
and the weighted error from pixels within a predefined diffusion region of previously processed pixels.  As a
result, the diffusion filter is necessarily causal resulting in undesirable visual artifacts.  In an effort to improve
halftone image quality, others6 have proposed the use of two-dimensional neural networks to provide a
mechanism for symmetric error diffusion.  Convergence and stability issues in conjunction with
implementation constraints limited the usefulness of most of these approaches.

The Error Diffusion Neural Network
The popularity of the neural network-based approach lies in the ability to minimize a particular metric

associated with a highly nonlinear system of equations.  Specifically, the problem of creating a halftoned
image can be cast in terms of a nonlinear quadratic optimization problem where the performance metric to be
minimized is the difference between the original and the halftoned images.

The Hopfield-Type Neural Network
The dynamic behavior of an N-neuron Hopfield-type neural network can be described by the following

system of N nonlinear differential equations:
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Hopfield showed that when the matrix of interconnection weights T is symmetric with zero diagonal elements
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The Error Diffusion Neural Network
Figure 1 shows the block diagram of a 2-D error diffusion architecture and an electronic implementation

of a four-neuron error diffusion-type neural network.  Here the individual neurons are represented as
amplifiers and the synapses by the physical connections between the input and output of the amplifiers.
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Figure 1.  (a) Block diagram of a 2-D error diffusion architecture, (b) Four-neuron electronic implementation.

In equilibrium, the error diffusion neural network satisfies
u W y u x= − +( ) . (4)

For an NN × image, W is an 22 NN ×  sparse, circulant matrix derived from the original error diffusion
weights jiw , .  If we define the coordinate system such that the central element of the error diffusion kernel is
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An equivalence to the Hopfield network can be described by
u A Wy x= +( ) , (6)

where 1)( −+= WIA .  Effectively, the error diffusion network includes a pre-filtering of the input image x by
the matrix A while still filtering the output image y but now with a new matrix, AW.  Recognizing that

AIAW −= and adding the arbitrary constant Axxyy TTk += , we can write the energy function of the
error diffusion neural network as

$ ( , )E x y T T T= − +y Ay y Ax x Ax2 . (7)
This energy function is a quadratic function which can be factored into
 $ ( , ) [ ( )] [ ( )]E x y T= − −B y x B y x

error error
123 123 (8)

where BBA T= .  From Equation (8) we find that as the error diffusion neural network converges and the
energy function is minimized, so too is the error between the output and input images.  Computing the Fourier
transform of this energy function we find that the error diffusion neural network minimizes the frequency
weighted squared error between the output and input images.

If the neurons update independently, the convergence of the error diffusion network is guarenteed8 if
[ ] 0: , ≥∀ kkk AW . (9)

We find in practice, that even in a synchronous implementation, the halftoned images converge to a solution
which results in significantly improved halftone image quality over other similar halftoning algorithms.



The Error Diffusion Filter
The purpose of the error diffusion filter is to spectrally shape the quantization noise in such a way that the

error resulting from the quantization process is distributed to higher spatial frequencies which are less
objectionable to the human visual system.  In this application, the feedback filter for the error diffusion neural
network was designed using conventional two-dimensional filter design techniques and resulted in the impulse
response and frequency response shown in Fig. 2 (a) and (b), respectively.

                
(a) (b)

Figure 2.  (a)  Impulse response and (b) frequency response of one specific 7 × 7 error diffusion filter.
( "•" represents the origin)

Figures 3 (a) and (b) show 348 348×  halftoned images of the Cadet Chapel at West Point using classical
halftoning techniques and our error diffusion neural network, respectively.  Notice the uniformity of the pixel
distributions in the upper-left of Figure 3(b) in cloud structure and also the improvement in the rendering of
edges throughout the image.  Figure 3(b) represents an artifact-free halftone image.

                      
                                               (a)                                                                             (b)
Figure 3.  Halftoned images of the Cadet Chapel at West Point.  (a) using classical error diffusion3, and (b)
using our error diffusion neural network.

Figure 4(a) shows a 512 × 512 halftoned image of a synthetic raytraced image9 using a classical error diffusion
halftoning technique and Figure 4(b) shows the same image after processing with our error diffusion neural
network and the error diffusion filter coefficients shown in Figure 2(a).  Figure 4(b) again results in a
completely artifact-free halftoned image which accurately represents the original image.  In this image, note
particularly the detail in the reflection in the ball, in the black floor tiles, as well as in the shadows under the
table.
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(a) (b)
Figure 4.  Halftoned images of a raytraced image.  (a) using classical Floyd-Steinberg2 error diffusion, and (b)
using our error diffusion neural network.

A desirable attribute of a well-produced halftone of a fixed gray-scale image is radial symmetry of the dot
pattern since the human visual system is extremely sensitive to directional artifacts.  One quantitative metric
for judging the quality of a halftoning algorithm is the anisotropy1 which is a measure of the relative variance
of frequency samples within a given annulus of the radially averaged power spectrum.  Using Bartlett's
Method10 of averaging periodograms, ten periodograms of 256 × 256 output pixels from a halftone rendering
of a constant gray-level input image are averaged to produce an estimate of the power spectrum )(̂fP of the
halftone.  This spectral estimate is then partitioned into annuli of width ∆w and the radially averaged power
spectrum is computed according to
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where )( rr fN  is the number of discrete frequency samples in an annulus about the radial frequency rf .  The
anisotropy is then defined as the ratio of the sample variance of the same frequency samples to the radially

averaged power spectrum.  If )(̂fP  is perfectly radially symmetric, the anisotropy measure should be 
10
1

 or -

10 dB over the radial frequency range.  When we computed the anisotropy on gray-scale images using our
neural algorithm, the resulting anisotropy was consistently -10 dB with the plots being indistinguishable from
the ideal curve.

Figure 5(a) shows one representative anisotropy curve from the error diffusion neural network with a
constant input gray-level of 0.25.  This anisotropy curve is consistent with the best anisotropy identified by
Ulichney in Reference [1].  Figure 5(b) shows the radially-averaged frequency spectrum resulting from the
same input.  Spectral noise shaping to higher, blue frequencies, is clear.  The cutoff frequency here is
consistent with both the average input gray-level and the cutoff frequency of the error diffusion filter.
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(a) (b)
Figure 5.  (a)  Anisotropy and  (b)  radially-averaged frequency spectrum the error diffusion neural network
for a uniform gray-scale input of 0.25.

Extensions to Color
Within the past year, we have demonstrated the applicability of our error diffusion neural network to color

halftoning, demonstrating excellent color image reproduction while simultaneously achieving a modest image
compression ratio of 8:1.  Figure 6 shows the results of this error diffusion network to color halftoning.  Of
particular interest is the detail in the upper-right of the image in the words: “ ”

  
           (a)     (b)

Figure 6.  Color halftoning using an error diffusion neural network.  (a) Original color image (24 bits/pixel),
and (b) halftoned color image (3 bits/pixel).

The results shown in Figure 6 were achieved by simply implementing three independent error diffusion
networks in parallel, one for each of the primary colors in the image.

Conclusions
In our quest to develop an optical implementation of the error diffusion algorithm which provides

improved halftoned image quality and performance, we have achieved several  firsts.  We have developed a
new artificial neural network architecture based on the mathematical foundation of the error diffusion
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algorithm which we call an error diffusion neural network.  One significant advantage of this new
implementation is that arbitrary size and shape diffusion kernels can be implemented thereby reducing the
visual artifacts which have become characteristic of halftoned images. This can be accomplished with no
penalty in terms of computation speed.  The error diffusion neural network computes the halftoned image
asymptotically faster than a conventional Hopfield-type neural network.  This network also provides full-rank
connectivity across the entire image in contrast to other error diffusion techniques which provide only local
error diffusion.  The halftoned images that result from this new halftoning process are currently the best
halftoned images available. No other halftoning technique provides artifact-free images.
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Future Direction
One specific continuation of this research includes an investigation of an optimal approach to

halftoning of color images, considering human color perception and the relationship and interconnectivity
between the three individual networks.  A theoretical analysis of this three-dimensional neural network is
necessary to address such issues as convergence, stability, and network dynamics.  Performance metrics must
also be considered, providing quantitative results by which to compare these color halftoning results.  A
logical extension of this color halftoning which will also be investigated is an extension to more than three
primary colors and the relationship to multi-spectral imagery and image compression.
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